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Introduction

The history of the finite element method (FEM) started with the idea of R. Courant, an
outstanding mathematician, which he made public in 1943 [1]. Initially, the researchers took no
interest in the Courant’s idea, as its realization required huge computational efforts. After the
emergence of computers the method started to be actively developed by research engineers. And
they, not mathematicians, occupied computers immediately in order to obtain answers to practical
questions. Courant’s procedure had become a new step in computational mathematics, though the
influence of FDM (the method of finite differences) [2] was felt for a certain period of time (until
the appearance of Turner’s arbitrary triangulation). In 1954 Argyris [3] developed certain
generalizations to the linear theory of structures and presented methods for investigation of discrete
structures of complex configurations in a computer-friendly form. A year later he showed [4] that
matrix equation of the system could be obtained by minimization of the system potential energy
both for the stress and deflection methods. First formal FEM presentation along with the stiffness
method belongs to Turner, Clough, Marting and Topp [5, 6], who for studying the problems of
plane stress state used equations of the classical elasticity theory to describe the properties of
triangular element. They applied matrix methods, intended for discrete structures, to continuous
structures due to their division into finite number of elements. The term of “finite elements” was
first introduced by Clough [7] in 1960. For approximation of two-argument functions traditional
approach could be used, i.e. building approximation according to Lagrange (factorization of two
one-dimensional Lagrange polynomials of the corresponding degree) and obtaining Lagrange finite
elements (LFE) [8, 9]. Factorization leads to Lagrange elements having nodes in the middle of a
finite element. Internal nodes increase the amount of computations and are not used for assembling
finite elements. As to serendipity finite elements (SFE), they are deprived of these drawbacks. The
primary aim of SFE creation is to provide the possibility of transforming an arbitrary quadrangle
into a square and reducing the amount of computations by removing “extra” internal nodes. Such
curvilinear element appeared in [10] for calculation of structures and was given the name of
“serendipity finite element”. Rapid development and popularization of FEM is explained by the
professional background of its users. On the other hand, some believe (and not without reason) that
lack of mathematical knowledge, characteristic of engineering-oriented professionals, was the main
reason for emergence and spread of false hypotheses and inadequate models in FEM. Most errors
were due to the construction of form functions (basis functions) of finite elements, in particular, the
elements of serendipity family. A square with bilinear interpolation was first used as a
computational template in 1964 [11]. This element is combined well with a triangular simplex,
creating a simple and efficient FEM grid. Squares, as a rule, are efficient in the middle of the
computational domain and triangles — in the boundary strip. In real two- and three-dimensional
problems boundaries of the computational domain, boundaries between the elements as well as
interfaces (in inhomogeneous environments) are often curvilinear [9, 11, 12]. Exactly this element
was investigated by Ergatoudis, Irons and Zienkiewicz in 1968 [10]. It was an example of
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successful application of the isoparametric technique that consists in selecting piecewise polynomial
functions in order to determine transformation of the coordinates [13]. The term “isoparametric”
means that for coordinate transformation the same polynomials are selected as those interpolating a
physical field, i.e. basis functions play a double role. In 1968 the authors did not take into account
that basis functions play a triple role [10]. They are used in the problems of localization of the loads
on a finite element. If there are internal nodes, transformation could be sensitive to displacements of
these nodes. Probably, the authors [10] observed the feature and this was the reason for their
abandoning the internal node of Lagrangian model. In the early 80-ies of the 20th century, when it
became clear that the role of matrix algebra in FEM is exaggerated, geometrical approaches
appeared [14] as well as stochastic procedures for constructing the bases [15, 16].

Analysis of the research

The paper is based on publications [17 — 26].

Research aim

The main aim of the research is to review the results of constructing the models of serendipity
finite elements on the basis of the theory of plafales: clear understanding the quadruple role of the
basis functions of serendipity finite elements and further application of the developed models (as
algorithmic basis) for information technologies in FEM.

Current importance of the research

There is a possibility to create universal software-hardware complexes (SHC) as practical
implementations of information technologies in FEM with artificial intelligence component for
constructing form functions (basis functions) in automatic mode.

Main part

Serendipity models are an example of simultaneous interpolation and approximation: they
interpolate a function at the boundaries of an element and approximate inside it. Main drawback of
the standard SFE bases [8 — 11, 27 — 30] is unnatural per node distribution of the load from the unit
bulk force: in angular nodes loads are negative (Zienkewicz paradox) [9]. Standard form functions
(Zienkewicz bases) play a double role: they are used in isoparametric technique. Standard model has
no degrees of freedom because it is constructed according to “rigid” [31] recipes of matrix algebra
under Lagrange interpolation hypothesis. The number of additional monomes in SFE interpolant
depends on the order of the corresponding LFE basis. First alternative SFE models appeared in 1982
[15, 16] due to the impossibility to find rational understanding of the unnatural per node distribution
of the bulk force. At present there are several methods for building alternative models (32). SFE
with negative loads in the nodes are not suitable for computer testing. Appearance of alternative
serendipity models (which realize adequate distribution of uniform bulk force) is associated with
probabilistic-geometrical method of the basis function construction, developed by Khomchenko [15,
16, 33 — 40]. In fact, A. N. Homchenko initiated and his followers further developed constructive
(in the spirit of Bernstein [41]) theory of serendipity approximations, the results of which prove
constructively the triple role of the basis SFE functions.

Quadruple role of basis functions

In publications [17 — 22] the following key aim was set: to prove constructively the quadruple
role of SFE basis functions. The fourth role characteristic is 7 (time). A priori, software complexes,
known in SFE, such as Nastran, [lItyniep, Ansys, etc., as well as computer-aided design (CAD)
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systems, e.g. Solid Works, contain sets of bases in their algorithmic base, which were previously
found by the researchers. At the same time, none of the modern software complexes and CAD
systems contain alternative SFE bases, as only one information technology (in Turbo Pascal) was
created by the students of A. N. Khomchenko for computer diagnostics of stationary physical fields
[42]. So, there arises interest in creation of a new generation of universal software-hardware
complexes (HSC), which solve the following classes of practical tasks:

1. Automatic mode of constructing optimal form functions of SFE (bases, which realize a
theoretically substantiated and physically adequate distribution of nodal loads), using known
computational templates.

2. Automatic mode of constructing optimal SFE bases with the use of computational templates,
at which form functions have not been found yet, e. g. for regular n-triangles of

n=22" 4+1,k>2 type [43].
3. Automatic mode of constructing optimal SFE bases, which satisfy Laplace differential
harmonicity criterion [44], integral harmonicity criteria of Koebe and Privalov [45, 46].

Definitely, the above SHC is a practical implementation of information technology in FEM,
which performs collection, processing, storing and displaying digital information for a user. This
information technology and the results of the constructive theory of serendipity approximations
could be used as a qualitative tool for further development of software complexes and CAD systems
in FEM.

For the first class of problems an algebraic-geometrical method could be used [47] as an
algorithmic basis of SHC. For ensuring realization of SHC line, which solves problems of the
second and third classes, it is necessary to develop qualitative mathematical models and to employ
artificial intelligence [48]. Among the infinite quantity of optimal SFE bases, which realize one and
the same load spectrum, searching for the basis, satisfying differential and (or) integral harmonicity
criteria, is an NP-hard problem (an exhaustive search problem) [49].

For successful solution of the second- and third-class problems the above-mentioned hardware-
software complexes must perform comprehensive analysis of L=L(x,y,r) of the given
configuration, forming the surface of basis function N(x,y)= L(x, y,T), where T — time moment
of surface N(x,y) formation. An indispensible component of the analysis is investigation of
intermediate surfaces M (x,y)= L(x,y,T) (t = fix (fixed value), which are formed (could be
obtained) within a certain time interval ¢e[0,7]. A priori, having analytical form function
N(x,y), we can perform visualization (to obtain illustrative 3D images in space x, y, z) of non-
stationary surface L(x,y,t)=N(x,y)oT(f) (o—symbol of functions composition); in a separate
case — L(x, y,t) =N(x,y)®T(t), T(t) — normalizing factor.

In the case, when basis function is viewed as a time function in an explicit form, e.g. for first-
order SFE (Ni(x,y,t):ufi)(t)+u(2i)(t) x+ugi) (t)y+u£f)(t)xy, where i — node number), standard

form functions could be obtained with the application of matrix algebra apparatus and taking
interpolation hypothesis into account [8, 9, 29]. As a result, for bilinear interpolation basis the
following identity is valid:

Ni(x,y) = Ni(x, 3, 1) = W @) + 0§ (@) x+ 1P @)y + 1P (1),
; 1 ; 1 ; 1 ; 1 )
ui”(T»:Z,ué’)(T»=in,u§’><7:->=Zyi,ua’><7;>=zxiyl-,xi, yi=tli=1234.

In fact, with the application of time component, a new approach to constructing SFE bases
appears, namely: the sought-for SFE form functions are logical consequence of comprehensive
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analysis of models L = L(x, y,t).

In the strict sense and in a general form, u = u(x, y,t) — three-dimensional topological manifold
M3 [50, 51] in four-dimensional space, M (x,y) — projection (two-dimensional manifold M 2y of
manifold M > on three-dimensional space. Thus, model of mappings ( Homy,, (E " .M"™)[52]) (Top -

the category of topological spaces [52], E™ — m-dimensional Euclidean space [53]) is as follows:

1. u:E>>E* u=u(x, y,t) — monomorphism (in a general form), x, y,  — dimensions of E>.

Three-dimensional manifold M *is obtained as a result of mapping.

2. M 35 B, f — monomorphism (in a general form), x, y, z — dimensions of E3. Two-
dimensional manifold M ? (the perspective) is a result of mapping action.

With the application of the “theory of plafales” apparatus [24, 25], the procedure of obtaining
surface M (x,y) (projections of three-dimensional manifold M 3 on three-dimensional space) is as
follows:

N
1. wu: PFkU =FE* E3, u=u(x,y,t) — monomorphism (in a general form), x, y, z —
dimensions of E>. First-order surface E> (plane) is homeomorphic to the object of the theory of

N
plafales — the static canvas of plafal PFkU " [25, P. 16]. In terms of algorithmic complexity, the

above operation is more optimal than the model consisting of two successive mappings, as sought-
for manifold M* 1is obtained as a result of single mapping. The above mathematical component
was incorporated (as an algorithmic component) into the newly-created information technology in
C# for real-time rendering. Practical implementation of this technology is software complex
“Testing non-stationary temperature fields with dynamic thermoelements” [23].

The developed mathematical models of SFE [17 — 22], based on the apparatus of the theory of
plafales [24, 25], include configurations L =L(x,y,t) on square and triangular templates and,

consequently, simulate formation of non-stationary surfaces of field functions

m
Ulx, y,t) =Y N;(x,y)®U,(t). Search for solution of all three classes of problems by SHC involves
i=1
computer time and its power resources [54]. Time is a complex tool: it serves as a qualitative
indicator of SHC and computer operation for processing the results of constructing basis and field
functions. Quadruple role of basis SFE functions has the following significance: 1. They are
used in isoparametric technique and in the problems of the distribution of loads on the finite
element. 2. On 2D computational templates (square, triangle, etc.) basis function is a time function
in the implicit form, namely, N;(x,y)=1L; (x, y,Tl-). Qualitative properties and the requirements to

SFE form functions result from the analysis of L= L(x, y,#) models by SHC.

Conclusions

Using the apparatus of mathematics (the theory of categories), the paper shows the advantage of
applying “the theory of plafales” apparatus for comprehensive analysis of L= L(x,y,r) models as
algorithmic bases of SHC of the second- and third-class problems. For second-class problems SHC
develop a constructive (in the framework of the constructive theory of functions [41] ) mathematical
model (if necessary) on the basis of publications [17 — 22]. Quadruple role of basis functions has the

Hayxkogi npaui BHTY, 2016, Ne 2 4



INFORMATION TECHNOLOGIES AND COMPUTER ENGINEERING

following significance: 1. They are used in isoparametric technique and in the problems of
distribution of the loads on a finite element. 2. On 2D computational templates (square, triangle,
etc.) basis function is function of time in the implicit form, namely: N;(x,y)=L, (x, y,Tl-).
Qualitative characteristics and the requirements to SFE form function result from the analysis of
L= L(x,y,r) models by SHC. Followers of the constructive theory of serendipity approximations

(the school of A. N. Khomchenko) [23, 42] developed information technologies for testing
stationary and non-stationary physical fields respectively.
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