INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

D. O. Topchyi

THE THEORY OF PLAFALES: CONSTRUCTION OF A STANDARD BASIS
OF SFE-12

On the basis of the theory of plafales, the paper shows the main steps of the algorithm for constructing a
standard basis of the serendipity finite element — SFE o 12 (bicubic approximation,).
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Introduction

The history of the finite element method (FEM) started with the idea of R. Courant, an
outstanding mathematician, which he published in 1943 [1], [2-4]. Initially, the researchers took no
interest in Courant’s idea since its realization required huge computational efforts. After the
emergence of computers the method started to be actively developed by research engineers. And
they, not mathematicians, occupied computers immediately in order to obtain answers to the
practical questions. Courant’s procedure had become a new step in computational mathematics,
though the influence of FDM (the method of finite differences) remained for a certain period of time
(before the appearance of Turner’s arbitrary triangulation). Rapid growth and popularization of FEM
is explained by professional background of the users. On the other hand, some believe (and not
without reason) that the lack of mathematical knowledge of engineering-oriented professionals was
the main cause for the emergence and spread of false hypotheses and inadequate models in FEM.
The majority of errors are associated with the construction of form functions (basis functions) of
finite elements, in particular, the elements of serendipity family. These elements were a real
breakthrough in FEM.

A square with bilinear interpolation was first used as a computational template in 1964 [5]. This
element is wonderfully combined with a triangular simplex, creating a simple and efficient FEM grid.
Squares, as a rule, are efficient in the middle of the computational domain and triangles — in the
boundary strip. In real two- and three-dimensional problems boundaries of the computational
domain, boundaries between the elements as well as interfaces (in inhomogeneous environments) are
often curvilinear [5, 6, 7]. Such element was investigated by Ergatoudis, Irons and Zienkiewicz in
1968. It was an example of a successful application of the isoparametric technique that consists in
selecting piecewise polynomial functions in order to determine transformation of the coordinates [9].
The term isoparametric means that for coordinate transformation the same polynomials are selected
as those which interpolate a physical field, i.e. basis functions play a double role. In 1968 the authors
did not take into account that basis functions play a triple role [8]. They are used in the problems of
localization of the loads on the finite element. If there are internal nodes, transformation could be
sensitive to the displacement of these nodes. Probably, the authors observed the feature and this was
the reason for their abandoning the internal node of Lagrangian model [8]. In the early 80-ies of the
20th century, when it became clear that the role of matrix algebra in FEM is exaggerated,
geometrical approaches appeared [10] as well as stochastic procedures for constructing the bases
[11, 12]. It 1s no exaggeration to emphasize that bicubic approximation (interpolation) occupies a
special place in the theory of polynomial approximation of two-argument functions.

We believe that there is a possibility to propose an algorithm of constructing basis functions,
based on the theory of plafales, which is different from the above-mentioned procedures [13, 14, 15].
On our opinion, the role of basis functions is a tetradic one. IT platforms in FEM, that could be
created on the basis of the theory of plafales [16], contain the notion of algorithmic complexity:
introduction of the basis (and global basis) functions into the software complex as well as search for
the problem solution by software-hardware complex are functions of time. Therefore, basis functions
are functions of time. Definitely, an integral component of the above-mentioned IT platform is the
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process of its functional visualization [17].

Analysis of the research

This study is based on the works [13, 14, 15] and on the conference materials [16, 18].

Aim of the work

The paper aims mainly at showing the algorithm of forming surface Li(x= y,) (bicubic
approximation) of the basis function of time.

Current importance of the work

IT platforms in FEM (based on the algorithms of the theory of plafales) can contain an artificial
intelligence component — construction of basis functions in the automatic mode.

Main part

We shall consider a standard square 2x2 with 12 nodes — a serendipity finite element (Fig. 1).
Basis functions of bicubic interpolation L;(x,y) (i =1;12) must satisfy the interpolation hypothesis:

12
Li(xkﬂyk) = 9, .ZlLi(x,y) =1, (1)
1=

where 6;; — Kronecker symbol, i — number of the function, & —number of the node.
10 9
4¢ ® ® R

11e¢ .Vt 8 x|<1,
X
124 . y|<I.

[ & @ .
1 5 6 2
Fig. 1. Serendipity FE of bicubic interpolation (12 nodes)
Standard basis of SFE e 12 is given by [19]:
Ly(x,y) = 3L2(1_x)(1_y)(_10+9(x2 ), Ly(x,y) = 3i2(1+x)<1—y)<—10+9(x2 +y%)),
Ly(x,y) = 3i2(1+x)<1+y)<—10+9(x2 £y, Ly(ny) = 3L2(1_x)(1+y)(_10+9(x2 %),
Ls(x,y) = 322(1_x2)(1_y)(1_3x), Lg(x,y) = 322(1_x2)(1_y)(1+3x),
@)
Ly(e.3) = S5 =p10=30) Lley) = (=1 +0(1+3),
Lony) = (=113, Ligny) = 2-(1=)1+ »)(1-30)
Iy (y) = S 0=)=-01439), Lpley) = S (0-)1-200-37)

Let us consider properties of function Z; (x,3,1):
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Ll.(x, y)t=T,i=1l2,

L.(x,y.t)=L.(x,y) G(t) =
j(o21)=L{x.y) GO) N (x,y)te(: Ty 20 =L12, ®)

z,, = G(0),

where parameter 1 — time; 7 — moment of time when surface (2) is formed; respectively N; (x,y) —
surfaces that are formed at the time moments ¢ e(y;7]; G(¢) — global function of modification time
of the applicates of surfaces L; (x,y,7). In what follows (in an implicit form), G(#) will be considered

as composition of the objects of the theory of plafales.
Let us formulate an interpolation hypothesis for functions N; (xz, ) as follows:

Niloxge i) = 84°G(0) )
For functions N; (x,y) the following estimation is performed:
|Nl'(xay)£1 (5)

Introduction of the systems and preparation of a computational template

Let us introduce the following systems of the theory of plafales: the static canvas of plafal PFkU i

[15, P.16], the «ensemble» of the points PFe'(ZS [15 . 569 - 575], the imaginary point of plafal

prlielpi [15, P. 29 - 86], the degenerate isolated point of plafal [15, P. 23 - 25], the flickering
point of plafal prlielpid [15, P. 87 - 152].

On the static canvas (a zero-level surface) PFk " ensemble of the points PFe'(ZS [15 . 569]

(i.e) ) .
creates a standard square 2x2: PF ™ ) with 12 nodes along the contour (Fig.2):
") (xy)
PEY” : PE™ RN PFE™ (i’e: (6)
i) (/)7 (5,7)
SP (i.e)pi
PF PF

bd(ie)p"®
PF

Fig. 2. Creation of the finite element

As a computational template, in a general form, Fig. 3 will be considered. Nodes 1,2,3,4,5,6,

7,8,9,10, 11, 12 are imaginary PF (ie)pi or degenerate isolated points PF balie)p (for each of the
12 basis functions there is its own order of location), between which time-based transition is

Haykosi npaui BHTY, 2014, Ne 3 3



INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

performed [15, P. 31, P. 41]. Along the sides 1 — 2, 2 — 3, 3 — 4, 4 — 1 (along the contour,
respectively) and inside the square (region D) flickering points PF"“”“ are located.

SP (i,e)pi
PF g PF

Fig. 3. Computational template

Computational template configuration
Using the interpolation hypothesis (1), we assume [15, P. 30]:
N;(x;,y;) = PEGOP = a(m(r)) +1=1, (7)

where a(m(t))£1 — characteristic function of an imaginary point; m(z) — time function of the
characteristic function. Using the interpolation hypothesis (1), we assume [15, P. 30]:

) (00
Ni(xp, vz ) = PFPAGOPTT = gn(r)) +1=0, (8)
where a(n(t))£1 — characteristic function of the degenerate isolated point; n(¢f) — time function of

the characteristic function. Using the property |N,- (x, y} <1, we assume that values of the applicates
along the contour 1 — 2,2 -3,3-4,4—1 and inregion D [15, P. 88]:

Ni(x,y) = PEEOP  qn)£1; (o) £1|<1, 9)

where a(h(t))+1 — characteristic function of a flickering point; 4(f) — time function of the
characteristic function.

Respectively, for characteristic functions a(m(¢))£1, a(n(t))x1, a(h(t))£1 the following
possibilities arise:

— For (7), (8), (9) there is a common time value 7 =T, for which they exist. Therefore, m(z), n(r)
and A(z) are interrelated as follows:

-0,
{ZEZ(:)): U= 0= £y (10)
h(t)=hy(t)o hy(t)=mlt, B)on(t, B |B|<1 (11)

This construction is a “soft” modeling [20] of the computational pattern configuration.

— m(t) and n(¢) are arbitrary functions. Therefore, for each of them its own time moment may
exist, when equalities (7), (8), (9) are realized.

The sequence (time-based transition) of constructing the basis functions consists from the
following chain: L;(x,y)— Ly(x,y) = Ls(x,y) = Ly(x,y)—...— L;5(x,y). Between the basis functions
smooth time-based transitions are performed. In what follows, construction of the chains of basis
functions will be performed in accordance with the two above-mentioned possibilities. Timing will be
started from ¢ =0.
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Construction of the basis function in the first node
In accordance with (4), (7), (8), (9) we obtain configuration of the basis function in the first node
(Fig. 4):
Ny, yp) = PFOOP = a(m(n) £1=1,
xei) = PERCOP < g x1=0; k=212

N 12
x,y)1_2,4_1,D = PF(”e)p’d =a(h(t))tl=qa; |a|<1, (12)

= =

(i.e)

ll
.

(
(
(
(

x,J’)2—3,3—4 = PF(i»e)pid = a(h(t))il:Pde(i’e)P

=

de(i,e)p{"e) (i.e)pid

4
b @
Vo i 4

Fig. 4. Configuration of the basis function in the first node

In the correspondence of two cases 5.2 (of the computational template configuration), we obtain
— According to (10):

In(n(t)) =1 n(t) =exm(t); (13)

Let us assume that 4:m(t)=t = n(¢t)=ext. Then (11) takes on the form:

Jacln: {ln(M(f)) =0,

9 3 9 5 1 1 9 3 9
h(t =ix(——B° +—= B +—Pf——)+(ext)x (- (—= B> +—
(D1-2,4-1 =1x( 16ﬂ 16ﬂ 16ﬂ 16) (ext)x(1-( 16ﬂ T

W)y :B=x; h(t)g_1:B=y.

2, 1g 1
P +16P 16 B]<1,

(14)
{h(t)thx§+(e><t)><r; |§|<l; |T|<1,
ht)p :(&57) =(x; ).

From (13), (14) and 4 we determine that system (12) comes into force (surface L;(x,y) is
formed) for +=7=1:

xp, 1) = PFEOP = In(1)+1=1,

. (i,e) R
X,y ) = PFPAGOPTT — ney—1=0; k=212,

. (15)
x,y)1_2,4_1,D = prlielpid = L;(x, )

. . : (i,e)
03 = PFEP = gy £1= pEPCOP™ < ey —1 = 0.
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For 0<z<1 system (12) takes on the following form:

Ni(xp,31) = PFEOP = 1n<r)i1,

Ny (e, v ) = PEPAGOP™ _nonpy+1; k=212, 16
1
N6y 2a1p = = prlielvid - In(h(t)1-2,4-1,p) £1,
)

N, y)y 354 = _ prUePid _ oy +1= PEPGOPT 2 nexpy+1.

Function N,(x,y) is given by:
Ni(x,y) = (In()£1)°(In(ext) £1)°(In(h(t); 5 4_1.p)£D); 0<t<L. (17)

where compositions of the functions in (17) are equivalent to (15) and (16).
Smooth transition from L;(x,y)— N,(x,y)is performed according to the rules of «absolute

transition» and «absolute reversionary returning back transition after a certain time» [15, P. 31; 15,
P. 41]:

prlepi Q) Pde(,-,e),,a,e)’

. (18)
2(t) = (In(m(1+ ¢))° In(n(1 + ¢;00)) + (- +e) nd+ew)ly
prhdGoP™Y L 0("0)  ppleri  (_g)
g1(t) = (in(m(1+¢))° In(n(Ty)) + (- "Dy e 114 ;13 ],
0 (0) = (n(m(Ty + d))° In(n(Ty + d;o0)) + (DM T+ nTy+diy (19)
g (=g g (0).

where (1+¢) — time moment of smooth transition Z;(x,y)— N,(x,y); (T, +d) — time moment of
smooth transition L, (x,y)— N3(x,y); T, — time moment at which system (27) comes into force for
function N, (x, y)

— Let Vm(¢): 3t=T; so that (7) is satisfied :

Ni(x,31) = PFGOP = a(m(T) 1=1 (20)

Let Vn(f): 3t=T7, #T; so that (8) is satisfied:

N (g ) = prbd.ep™ _ a(n(T))£1=0 (21)
Taking into account (14), we reduce (20) 1 (21) to uniform conditions (22), (23):
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T2 > Ti :
Mx,a) = PFEOPI = g(m(e)+1; sup (a(m(@®)+1)=1; 1e(0;T3],

Nyl wp) = prodGap™ _ a(n(1))£1;inf, (a(n(t))£1)=0; te(0;B]; k=212,

)i 9 9 11 9 9 1.1
prlepid _ g2 g3 2 g2 Lg 1 N+(1-(—=p +Zp*+—p-—— ))+1=

a(( 16/)’ 16/)’ 16/)’ 16)><m() ( (16/)’ 16/)’ 16/)’ 16))><n())
=Ny gy =hB> + B>+ AP+ Ays AeR: j=lk T <t<Dy, (22)

) ) 4
prlielpid _ a(é’xm(t)+fxn(t))il=N1(x,y)D = z,uklxé’kfl; R, T<t<Ts,
k, =0

=L1(x,y), t=T15,

Ni(x,»)y 334 = PFP = a(h(o))£1=inf, (a(n(0)£1)=0; 1< (0],

PRI _ 4t 41 p)+1= Ny (x,)

1-2,4-1,D

T2 < Ti .
N, p1) = PFEOP = am(n) 215 sup (a(m(d)£D)=1; te(O;F],
Ny(xpoy) = PRAGCOP™ _ quen+1inf (a(n@) 1) =1, 1e(OT]; k=212,
9 - 1 1 B
B +1—6ﬁ—1—6))><n(t))il—

)i 9 9 1.1 9
prlepid _ y 2 g3, 2 g2 g 1 H+(1-(-—p>+=
WP 6P T16P 716 MO Uty

=N ) gy =hB> + B+ Maf+Ay; AeR: j=l& Thy<t<T, (23)

) ) 4
prlielpid _ a(é’xm(t)+fxn(t))il=N1(x,y)D = z,uklxé’kfl; R, T, <t<T,
k, =0

ZLI(X;J/)a t:Tia

Ni(x,»)y 334 = PFP = a(ho))£1=inf, (a(n(0)£ 1) =15 1< (0],

PRI — 4t 41 p)E1= Ny (x,)

1-2,4-1,D

Conditions (22) and (23) are generalized to configuration (12).
Function Ny (x,y) has the form of

N(x.y) = @m@)£D (@n@) £ @), 000) 25 1€ OT] or 1eOL) o)

where compositions of functions in (24) are equivalent to (22) and (23).
Smooth transition from L,(x,y)— N,(x,y) is performed according to the rules [15, P. 31; 15, P.

41]:

prGOPE QW) ppbd(ie)p™

o . (25)
() = (a(m(T; 5 +0))’ a(n(T; 5 +c;0)) + (1) " h2 ey nhiarely
prhdGoOP™Y 0 W) ppleri (p_g)
21(t) = (a(m(T 5 + ) a(n(Ty ) + (- 27O Do 4y,

o ) 26
22(0) = (a(m(Ty + d))° a(n(Ty + d;0)) + (-l +d) nsrdieo)ly (26)
g (t)=g1 (U g (1),
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where (7j, +c¢) — time moment of smooth transition Z;(x, y) = N (x,y); (I3 +d) — time mOment of

smooth transition L,(x,y)— N3(x,y); Ty — time moment at which system (27) comes to force for
function N,(x,y) .

Construction of basis functions in the 2— 12 nodes

Construction of functions N (x,y) j=2;12 is performed similar to function Nj(x,y) taking into

account configurations of basis functions (27):

Ni(x;,y;) = PEGOP = qim@r))£1=1; i=2;12,
; (ie) —_—
N, i) = PEPAGOPTT = a(n(e) £1=0; k=112/{i},

. 27
Ni(5 ¥ ememn = PFEPE = a(hyt1=a; |o|<l, 27)

- - o) p(0)
N6 )gmen = PFEP = a(n(ey) £1= ppoaGor™ - g
where iemnn is the node with which the side (-s) of a standard square are associated.

Assembling of surfaces
Proceeding from the everything mentioned above, for (3) we obtain that G(¢) is a global time
function of changing the applicates of surfaces L, (x, y,1):
G(t) =Ny (x,y)"Na(x, )" N3(x, )" Ng(x, )" N5 (x, )" Ng (x, )" N7 (x, )" Ng (x, »)° No(x, y)°
"Nio(x%,3)" Ni1(x, )" Nip(x, ) g(1)° g" ()

(28)

Conclusions and prospects for the research

In the case of successful testing of IT platforms, that can be created on the basis of the algorithms
of the theory of plafales [16, 18], it will be possible not to use the already known standard basis
L (x,y) Instead of it, functions Nz' (x, y) can be directly used. Respectively, the investigated

function L;(x,y,t) will have the following form: L;(x,y,r)=G(r). All the known informational

platforms in FEM, which are used in engineering calculations, contain a known set of standard basis
functions of O. Zienkiewicz. The proposed algorithm does not break monumentality of the standard
basis functions of Zenkevitch or alternative basis functions of A. N. Khomchenko. IT platform in
FEM (based on the algorithms of the theory of plafales) will perform the following functions: 1.To
construct, in an automatic mode, a basis function on the computational template, where people have
not found the basis yet. For a platform (in a final form) to be able to construct a monumental surface,
it must ‘“’analyze” intermediate surfaces that are formed before the final monolithic (basis) surface.
To realize this, a key parameter — time — is introduced. 2. To represent formation (the relief) of a
non-stationary field with dynamic thermocouples. 3. To function as an integral software complex that
will find physically adequate models on complex computational templates and perform its role in the
engineering applications.
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