INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

S. D. Shtovba, Dc. Sc. (Eng.), Prof.; O. V. Shtovba, Cand. Sc. (Economics);
O. D. Pankevich, Cand. Sc. (Eng.), Assist. Prof.

ACCURACY AND COMPACTNESS CRITERIA FOR EVALUATING THE
QUALITY OF FUZZY KNOWLEDGE BASES IN IDENTIFICATION
PROBLEMS

The knowledge base quality is viewed as the property of the model of dependence under study to satisfy
customer’s requirements according to many criteria, accuracy and compactness being the most popular
among them. Fuzzy knowledge bases that simulate three types of dependences are investigated with the
output in the form of a crisp number, fuzzy number or a class of solutions. For each type of the dependences
accuracy criteria of corresponding knowledge bases are systemized. For evaluating the compactness of a
fuzzy knowledge base 9 known partial criteria are described and 5 new criteria are proposed.
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Introduction

Definition of the term “quality of fuzzy knowledge bases” is a prerequisite for successful
development of the theory of formalized fuzzy knowledge base design. It is most simple to identify
quality with accuracy, i.e. with deviation of the fuzzy inference results from the experimental data.
This approach, which dominates in the modern theory of fuzzy identification, has led to a number of
negative results. Since 1990s a race for “accuracy” has started in the fuzzy scientific community,
which resulted in elaboration of a number of methods for designing highly accurate fuzzy knowledge
bases. However, fuzzy knowledge bases developed in accordance with these methods have lost a
significant competitive advantage — the ability to describe the dependence under study with literally
few natural-language statements understandable to the customers — experts in the applied areas
without specialized mathematical qualification. Customers perceive such highly accurate fuzzy
knowledge bases as an incomprehensible set of numbers that they are not used to trust when making
important decisions. Thus, in addition to accuracy, other quality criteria of fuzzy knowledge bases
should be taken into account while solving applied fuzzy identification problems.

The issue of the necessity to provide balance between accuracy and the number of fuzzy
knowledge base rules was first raised in [1]. In this paper fuzzy knowledge bases are used for
classification problems. Later, works have appeared about the balance between accuracy and
compactness of fuzzy knowledge bases of other types as well as about the balance between another
pair of criteria — accuracy and interpretability. Over the past two years several important papers [2 —
9] on the multicriterial fuzzy identification theory were published.

In [2, 3] with the help of computer experiments it is shown that for the rule selection problem the
dependence of fuzzy knowledge base accuracy on its compactness is quadratic. For parametric
identification problems with the tuning of membership functions of fuzzy knowledge base terms
exponential dependence of accuracy on compactness was observed [4, 5]. In [6] a method is
elaborated for solving one of the structural fuzzy identification problems, namely, that of selecting
fuzzy knowledge base rules taking into account accuracy and compactness. The novelty of the
method consists in the following: instead of the standard threshold levels of accuracy and
compactness [1], the linear constraint that determines the compensation mechanism between these
conflicting criteria is used. With the new constraint it is possible to reduce significantly the region of
feasible solutions narrowing it to the neighborhood of Pareto front.

Paper [7] proposes an approach to identification based on singleton fuzzy knowledge bases taking
into account, in addition to accuracy requirements, also transparency, i.e. consistency of the internal
model structure and its external behavior. In this paper consistency is understood as the possibility to
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predict the model behavior at the key points of factor space without performing fuzzy inference.
These key points are the cores of fuzzy antecedents of the rules. To provide transparency, the
following constraint is introduced: at each key point a corresponding rule of the knowledge base is
to be implemented with a single membership degree and other rules are not to be activated.

Paper [8] proposes an approach to identification taking into account the following three
components of the fuzzy knowledge base interpretability: 1) fuzzy partitioning of the variables must
meet the semantic integrity conditions; 2) knowledge base must be compact and sufficient; 3) each
rule must contain only informative features, i.e. rules could be incomplete (short).

Paper [9] proposes an approach to identification of dependences in classification problems, which
takes into account accuracy and interpretability of the fuzzy knowledge base. Interpretability is
proposed to be evaluated by consistency of implicit and explicit semantics of the fuzzy knowledge
base.

Paper [10] presents an overview of the approaches to defining the term “fuzzy knowledge base
interpretability” and proposes their taxonomy. Taxonomy is performed in accordance with
complexity and semantics of the models at two levels: at the level of knowledge base rules and at the
level of fuzzy partition of linguistic variables. It is shown that the term “fuzzy knowledge base
interpretability” and its metrics are not generally accepted yet and, therefore, require further
formalization and generalization. Overview [10] is written on 75 works.

Thus, there is a necessity in a formalized definition of the fuzzy knowledge base quality as the
model property to satisfy customer’s requirements on many criteria, such as accuracy, compactness,
transparency, interpretability, etc. The next step will be development of the algorithms of calculating
the above partial criteria for any fuzzy knowledge base. And, finally, methods should be developed
for ensuring the desired quality taking into account many criteria on the basis of systematic approach
to fuzzy modeling. The aim of the paper is to develop criteria of accuracy and compactness of fuzzy
knowledge bases that are used for modeling dependences with continuous, discrete and fuzzy output.

1. Classification of fuzzy identification problems

Let us consider the identification object of MISO type with n inputs X =(x,,x,,...,x,) and a
single output y. We propose to classify identification problems according to the type of output
variable y (fig. 1).
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Fig. 1. Classification of fuzzy identification problems
a) continuous output; b) discrete output; ¢) fuzzy output

For a continuous output (fig. 1a) the value of the output variable y will be an ordinary real
number from the range [y, ;]. Identification of such dependences is most often carried out using

fuzzy knowledge bases of Sugeno and Mamdani [11 — 13].
For a discrete output (fig. 1b) the value of the output variable y will be an element from the

countable set {/,,1,.,...,-} that is meaningfully interpreted as a decision. Identification of such

dependences is expedient to be carried out using fuzzy classified knowledge bases [1, 11, 14].
For a fuzzy output (fig. 1¢) the value of the output variable will be a fuzzy number. Accordingly,
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map X:(xl,xz,...,xn)—>)7 can be viewed as a fuzzy function. Three approaches are used for

identification of such dependences.

In the first approach [15, 16] a fuzzy knowledge base is used, where consequents of the rules are
given by fuzzy sets. A common key feature of the inference for such knowledge bases is production
of a fuzzy set at the output

y= |u;0 /7y, (1)

Jn
yely,y

—

where p5(y) — degree of number y €[y, ;] membership to the output fuzzy set y .

The obtained result will be in the form of fuzzy set (1) after the inference on Mamdani knowledge
base [12], on relational knowledge base of Pedrycz [17] and on a fuzzy knowledge base with fuzzy
regression equations [18]. Inference on these fuzzy knowledge bases is performed without
deffuzification. After that additional procedures for normalization and correction of non-convexity of
the fuzzy output set are sometimes necessary (fig. 2). Conversion of non-convex fuzzy sets into
fuzzy numbers is carried out by means of approximation by parametric membership functions. In this

case for calculating the residual between two fuzzy sets A= J u;(»)/y and B= Jug(y) /'y
yely, ] yely, ¥
the following formula is used:

(u;(y) — pz( y))z dy

e C— |

RMSE(A, B) =

= )
y-y

Zones of nonconvexity of the fugzy sets
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L

Fig. 2. Nonconvex fuzzy sets obtained by Mamdani inference

In the second approach a fuzzy knowledge base with crisp consequents is used, e.g. a singleton
fuzzy knowledge base or Sugeno knowledge base. The final inference procedure — defuzzification —
is not performed. Accordingly, at the output we obtain a fuzzy set on a discrete support that is
converted to fuzzy number y, by means of approximation using a continuous parametric membership
function. Parameters of this membership function we select so as to minimize the mean square
residual between membership degrees of the two fuzzy sets. In this case the results of defuzzification
of the discrete and continuous fuzzy sets must coincide. Fig. 3 presents the examples of such
approximation using typical and special membership functions from [16].
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Fig. 3. Aproximation of nonconvex discrete fuzzy sets by parametric membership functions

The third approach [15, 16] assumes that for each points of the factor space corresponding fuzzy
number y has parametric membership function of the same type. To describe the dependence of the

parameters of this membership function on (xl,xz,...,xn), a MIMO knowledge base, which has
several input and several output variables, is used. Input variables are identical to inputs
(xl,xz, ves xn) of the investigated dependence. Each output variable of the knowledge base sets one
parameter of the membership function of the fuzzy number y. For describing such dependences
different fuzzy knowledge bases are suitable — those, the inference on which results in obtaining crisp
numbers. E. g., fuzzy knowledge base of Mamdani will consist from the rules of the type:

If x,="Low” and x,="High”, then y,="Average” n y,="Small”,

where y, and y, — parameters of the membership function of output fuzzy number y, e. g.
concentration factor and coordinate of the maximum of the bell-type membership function.

2. Accuracy criteria for problems with continuous output

For accuracy evaluation we consider the following data sample to be known:

(X, 0,), v ey r=1M, 3)

where X and y, — a pair of «inputs — output» data in the r-th row of the sample; M — the sample
length

Let us denote the model based on the fuzzy knowledge base linking inputs X with output y of
the investigated dependence as y = F(X). For the problem with continuous output identification
accuracy for sample (3) is determined by the method of least squares:

1

RMSE=JH (0, - FX,)F

r=I,M
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Popularity of RMSE accuracy criterion is determined by the smoothness of the objective function
at the stage of parametric identification, which allows application of fast gradient optimization
methods. A disadvantage is the residual minimization on the average, which does not exclude
considerable errors in certain areas of the factor space. For protection against such runs maximum
absolute residual could be chosen as the accuracy criterion [19]:

y-F(X,) .

MaxErr = max
r=1, M

RMSE and MaxErr criteria are correlated, although, as a rule, a fuzzy knowledge base that
minimizes the residual for one of them is not the best according to the other criterion as well.

3. Accuracy criteria for the problems with a discrete output

Let us assume that the following data sample is known:

(X,,y,), yre{l],lz,...,lc}, r=1,M, ()

where {/,,1,,...,1.} — classes of decision

For the problem with discrete output classification error rate for sample (4) is usually chosen as
accuracy criterion:
¥4,

MCR="""—, (5)
M

Loif y,#F(X,)
0’ l.f‘ yr = F(Xr) .

The advantages of criterion (5) are its simplicity and visual interpretation. The disadvantage is
related to the fact that membership degrees of the chosen and the competitive alternatives are not
taken into account, i.e. “confidence” of the fuzzy classifier remains without attention while selecting
one solution from the set {ll, L, ...,lC}. This happens because, as a result of inference, for current

where A = {

input vector X* from the obtained fuzzy class

oy, X9y, (X¥) 0y (XF)
T

yeeees (6)

y(X*) = (
le
a single alternative with maximal membership degree is selected. Doubts as to the correctness of the
chosen solution arise when membership degrees of the alternatives are approximately equal.
To take into account the level of confidence when making decisions, in [14] an accuracy criterion
is proposed in the form of distance between experimental data and the inferred results. For this, the
value of output variable in sample (4) is fuzzified in the following way:

F=(/1,0/0,..,0/1c), if y=

JN;:(O/ZI71/Z27“‘9O/ZC)7 lf yzlz (7)

¥=(0/01,0/L,..,1/1¢), if y=Ic

After that, the distance between fuzzy classification results (6) and the desired fuzzy values of the
output variable (7) is calculated for each object. Accordingly, the accuracy criterion for the entire
sample (4) is written as follows [14]:

1
FD= |— ZD, , (8)
M oL M
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where D, = Z(“lj (y,)- qu(Xr))2 — distance between the desired and the inferred fuzzy sets in the
j=L.C

r-th object classification;
By, (y,) — membership degree of the variable value from the r-th row of data sample (4) of class

[; in accordance with (7);
by, (X;) — degree of the nput vector X, membership to class /;, calculated as a result of fuzzy

inference

Computer experiments conducted in [11, 20, 21] show that in some cases minimizing fuzzy
knowledge base (8) does not provide the rate of classification errors close to the minimal one (5). It
is explained by the fact that objects close to the interfaces between classes make almost equal
contribution to the accuracy criterion (8) for both correct and erroneous classification. Therefore, in
[20] a new criterion that inherits the advantages of the previous ones is proposed. The idea consists
in increasing the distance D, for incorrectly classified objects. As a result, the accuracy criterion

becomes as follows:

r=1, M

PFD = \/ﬁ Z(AV - penalty + 1)-D, , 9

where penalty >0 — penalty factor.
With the known prices for classification errors of different types, values of A in (5) and (9) are
determined according to the payoff matrix.

4. Accuracy criterion for the problems with fuzzy output

Let us assume that the following data sample is known:
(X,.7,), supp(3,) |y, v],, r=1,M, (10)
where y. — output value in the r-th row of the sample, which is given by a fuzzy number at the

supp (y,) support.
For the problem with fuzzy output the accuracy criterion for sample (10) is determined as follows
[15, 16]:

r=I, M

RMSE = \/ﬁ > RMSE(7,. F(X,)) .

where F(X,) — fuzzy number obtained as a result of inference on the fuzzy knowledge base for

input vector X, ; RMSE ()7r, F (XV )) — residual (2) between two fuzzy numbers corresponding to the
desired and the inferred results.

5. Compactness criteria of a fuzzy knowledge base

To evaluate the compactness of fuzzy knowledge bases the following partial criteria are used [1 —
5,8, 10]:

n — the number of input variables of the model;

N_ ... —the number of rules in the knowledge base;

rules
N,, — the number of the fuzzy knowledge base rules, the antecedents of which contain only one
variable, i.e. the number of rules with antecedents of the single-element length;
N,, — the number of the fuzzy knowledge base rules with the antecedents of two-element length;

N,; — the number of the fuzzy knowledge base rules with the antecedents of three-element

Haykosi npaui BHTY, 2012, Ne 4 6



INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

length;
N,, — total length of the antecedents of all the fuzzy rules;

Nx[ — power of the term set of the mput variable x;, i = I,_n;

N;ozal =y N, —total number of the terms of input variables;

i=l,n

RF :% — the level of the knowledge base fullness with rules where N, =[] N, -

max i=l,n

maximally possible number of rules.
In addition to these criteria we propose the following ones:
RF, —average level of a hierarchal knowledge base fullness with rules;

N

AF = TW — fullness level of the antecedents of the knowledge base rules;
n- max

AF, — average fullness level of the antecedents of a hierarchal knowledge base;

N,, —total number of the adjustable parameters in a fuzzy knowledge base;
N.

mfer — the number of inferences on a hierarchical knowledge base.
Integral compactness criterion can be determined by the convolution of the set of the above
partial criteria. Feasibility of including certain particular criteria into the integral criterion is

determined by the specifics of a corresponding identification problem.

Conclusions and prospects for future research

Quality of a fuzzy knowledge base should be viewed as the property of the model of dependence
under study to satisfy the customer’s requirements on many criteria such as accuracy, compactness,
transparency, interpretability, etc. We have considered fuzzy knowledge bases of three types, as a
result of inference on which we obtain a crisp number, a fuzzy number or a class of decision at the
output. For each knowledge base type accuracy criteria are systemized. For compactness evaluation
9 known criteria are described and 5 new criteria are proposed. These criteria take into account the
number of the model input variables, the number of rules in the knowledge base, the number of short
rules in the knowledge base, total length of the antecedents of all rules in the knowledge base,
powers of term sets of the input variables, the level of the knowledge base fullness with rules, the
number of adjustable parameters of the knowledge base, etc. The new criteria are mainly related to
the hierarchical fuzzy knowledge bases. Future research will be directed towards formalization of
transparency and interpretability of fuzzy knowledge bases with further development of multicriterial
methods for ensuring the desired quality of fuzzy identification of multifactor dependences.

REFERENCES

1. Ishibuchi H. Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern
classification problems / H. Ishibuchi, T. Murata, 1. B. Turksen // Fuzzy Sets and Systems. — 1997. — Vol. 89, No. 2 —
P. 135 -50.

2. llros6a C. JI. BrumB KiJbKOCTI HEUITKMX MNpaBWJI HAa TOYHICTh Oa3u 3HaHb Mawmpani / C. JI. IlToBOa,
B. B. Masypenko, O. [I. ITankeBuu // BicHuk XMEJIbHUIIFKOIO HAliOHAJIBLHOTO YHiBepcHTETy. TexHiuHI HayKu. —
2011. —Ne 2. — C. 185 —188.

3. lIroBoa C. JI. 3amexxHiCTh TOUHOCTI iaeHTHDIKaMil BiJf 00CATY HeUiTKOI CHHIIITOHOI 6a3u 3Hanb / C. []. IlIToBOa,
O. JI. ITankeBny, B. B. Ma3zypenko // Indopmariiiini TexHosorii Ta komn 1oTepHa imkenepist. — 2011. —Ne 1. — C. 73 —
78.

4. Itor6a C. JI. HocmimkeHHss HaBYaHHS KOMIIAKTHHX HEUITKUX 0a3 3HaHb Tumy Mammani / C. J. Illtos0a ,
B. B. Masypenko // llItyunnii intenekr. —2011. — Ne 4. — C. 521 — 529.

5. IlIrosba C. [. ocmimkeHHs HaBUaHHS KOMITAKTHMX HEYITKHMX CHHIITOHHMX 0a3 3Haup / C. J[. IllToBOa,
B. B. Masypenko // BumiproBasibHa Ta 0O4MCITIOBAIbHA TEXHIKa B TEXHOIOTIYHUX npouecax. — 2011. — Ne 1. — C. 133
—139.

6. Genetic algorithm for selecting rules of the fuzzy knowledge base balanced according to the accuracy and
Haykosi npaui BHTY, 2012, Ne 4 7



INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

compactness criteria [Enekrponnuii pecypc] / S. D. Shtovba, V.V.Mazurenko, D. A. Savchuk // HaykoBi nparti
BiHHMIIBKOTO  HAIlOHAJBHOTO TEXHIYHOro yHiBepcurery. — 2012.— Ne3. PexuMm Joctymy 10 IKypH.:
http://www.nbuv.gov.ua/e-journals/VNTU/2012 3/2012-3 en.files/en/12sdsacc_en.pdf.

7. Riid A. Identification of Transparent, Compact, Accurate and Reliable Linguistic Fuzzy Models / A. Riid,
E. Riistern // Information Sciences. —2011. — Vol. 181, Ne 20. — P. 4378 — 4393.

8. Guillaume S. Learning interpretable fuzzy inference systems with FisPro // Information Sciences / S. Guillaume,
B. Charnomordic // Information Sciences. —2011. — Vol. 181, Ne 20. — P. 4409 — 4427.

9. Mencar C. Design of fuzzy rule-based classifiers with semantic cointension / C. Mencar, C. Castiello, R.
Cannone, A. M. Fanelli // Information Sciences. —2011. — Vol. 181, Ne 20. — P. 4361 — 4377.

10. Gacto M. J. Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures /
M. J. Gacto, R. Alcala, F. Herrera // Information Sciences. —2011. — Vol. 181, Ne 20. — P. 4340 — 4360.

11. IItos6a C. [I. IlpoextupoBanue Heyetkux cucreMm cperacrBamu MATLAB / C. . llros6a. — M.: 'opsiuas
. — Tenexom, 2007. — 288 c.

12. Mamdani E. H. An Experiment in Linguistic Synthesis with Fuzzy Logic Controller / E. H. Mamdani,
S. Assilian // Int. J. Man-Machine Studies. — 1975. —Vol. 7, Ne 1. - P. 1 - 13.

13. Takagi T. Fuzzy Identification of Systems and Its Applications to Modeling and Control / T. Takagi, M.
Sugeno // IEEE Trans. on Systems, Man, and Cybernetics. — 1985. Vol. 15, Ne 1. — P. 116 - 132.

14. Pormreitn A. I1.  VHTeNIeKTyalbHBIE TEXHOJOTMH HMICHTU(HMKAIIMK: HEYEeTKas JIOTHKA, TI'CHETHYCCKHE
anropuT™sbl, HelipoHHble cetd / A. I1. Pormrreitn. — Bunnuna: YHIBEPCYM-Binnuigs, 1999. — 320 c.

15. Shtovba S. Fuzzy Model Tuning Based on a Training Set with Fuzzy Model Output Values / Shtovba S. //
Cybernetics and System Analysis. — 2007. —Vol.43, Ne3. — P. 334 — 340.

16. IlToba C. /I. HaBuanHs HewiTKOi 0a3u 3HaHb 3a BUOipkoro Hewitkux manux / C. [I. llro6a // LTyunwmit
iaTenekT. — 2006. — Ne 4. — C. 560 — 570.

17. Pedrycz W. An Identification Algorithm in Fuzzy Relational Systems / W. Pedrycz // Fuzzy Sets and
Systems. — 1984. — No 13. — P. 153 — 167.

18. roBba C. JI. MozaentoBaHHs 3aJIe)KHOCTEH 3a JOIMOMOIOI0 HEYiTKOI 0a3u 3HaHb 3 HEWITKUMH perpeciiHUMU
piBasuasimu / C. 1. lltoBO6a // BicHuk BiHHUIBKOTO MoiTexHiuHOrO iHCTUTYTY. — 2011, — Ne 3. — C. 195 — 199.

19. Rotshtein A. Modeling of the Human Operator Reliability with the Aid of the Sugeno Fuzzy Knowledge Base /
Rotshtein A., Shtovba S. // Automation and Remote Control. —2009. — Vol. 70, Ne 1. — P. 163 — 169.

20. Shtovba S. Tuning the Fuzzy Classification Models with Various Learning Criteria: the Case of Credit Data
Classification / S. Shtovba, O. Pankevich, G. Dounias // Fuzzy Sets and Soft Computing in Economics and Finance :
intern. conference, 17 — 20 June 2004 : proc., Vol. 1. — St. Petersburg (Russia), 2004. — P. 103 — 110.

21. Ilrtosba C. [I. [TopiBHsHHS KpuTepiiB HaB4aHHs HewiTkoro knacugikatopa / C. JI. Illto6a // BicHux
BiHHUIBKOTO MOTITEXHIUHOTO iHCTUTYTY. — 2007. — Ne 6. — C. 84 — 91.

Shtovba Serhiy — Prof., Dc. Sc. (Eng.) of the Department of Computer Control Systems.

Shtovba Olena — Cand. Sc. (Economics), Ass. Prof. of the Department of Management and Modeling in
Economics.

Pankevich Olga — Cand. Sc. (Eng.), Ass. Prof. of the Department of Heat and Gas Supply.
Vinnytsia National Technical University.

Haykosi npaui BHTY, 2012, Ne 4 8



