
INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING 

Наукові праці ВНТУ, 2012, № 3 1 

S. D. Shtovba, Dc. Sc. (Eng.), Prof.; V. V. Mazurenko; D. A. Savchuk 

GENETIC ALGORITHM FOR SELECTING RULES OF THE FUZZY 
KNOWLEDGE BASE BALANCED ACCORDING TO THE ACCURACY 

AND COMPACTNESS CRITERIA  

A genetic algorithm of searching for the set of rules is proposed in order to form a fuzzy knowledge base 
balanced according to the accuracy and compactness criteria. The algorithm is distinguished by 
introduction of the linear constraint into the statement of optimization problem. The constraint sets the level 
of the model accuracy compensation by its compactness. This approximates the region of feasible solutions 
to the Pareto front.  
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Introduction 

Fuzzy knowledge base is a set of “If – then” fuzzy rules that describe the relationship between the 
inputs and the outputs of a certain object using linguistic terms [1]. One of a fuzzy knowledge base 
design problems is selection of rules from a certain pre-defined set of candidates. Candidate rules 
could be formed by an expert or obtained by processing the existing experimental data.  

 Ideally, a fuzzy knowledge base should be both compact and adequate. This cannot be achieved 
in real problems and so, in practice, attempts are made to choose a knowledge base with a correct 
balance between these conflicting criteria. The necessary condition of such balance is the knowledge 
base location on the Pareto front in the “model complexity – model accuracy” coordinates.  

 Selection of the fuzzy knowledge base rules can be reduced to the binary knapsack problem. An 
object that can be placed into the knapsack corresponds to a rule of the knowledge base, utility of 
the knapsack – to the knowledge base accuracy and the total amount of selected objects – to the   
number of rules.  Difference between the problems is in the different types of utility function that is 
linear in the knapsack problem and is nonlinear – in the problem of selecting the knowledge base 
rules. By analogy to the classical statements of the knapsack problem [2] the problem of selecting the 
fuzzy knowledge base rules is generated. The main works in this area are papers [3, 4] on forming a 
set of knowledge bases of the fuzzy classifier which belong to the Pareto front of non-dominant 
alternatives in the “number of rules – accuracy" coordinates. For this optimization problems are used 
with the purpose of 1) maximizing the accuracy with the limited number of rules; 2) minimization of 
the number of rules for a given level of accuracy and 3) minimization of the integral quality criterion 
of the knowledge base in the form of a linear convolution of accuracy and of the number of rules [4] 
or of the accuracy, the number of rules and the total length of the antecedents of the rules [5]. To 
obtain the Pareto front, optimization is carried out repeatedly for different threshold values in the 
constraints of problems 1 and 2 and of the weighting coefficients of the objective function in problem 
3. Similar approaches are used while selecting the rules of the fuzzy knowledge bases for objects 
with continuous output [6]. 

The problem of selecting the fuzzy knowledge base rules as well as the knapsack problem is NP-
complete. Accordingly, the algorithm of the exact solution of this problem has exponential 
computational complexity and, therefore, will be acceptable only for a small number of candidate 
rules. In practice, this task is usually solved with the application of genetic algorithms. Encoding of 
the variants is performed according to the Pittsburg approach [7], representing the version of 
solution by a chromosome, each gene of which specifies the corresponding rule belonging to the 
knowledge base [6]. 

The threshold constraint on the knowledge base complexity or on the fuzzy model accuracy [3, 4] 
generates a fairly large region of feasible solutions, most of which is located far from the Pareto 
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front. This slows down finding optimum solutions that are located on the Pareto front. The goal of 
this paper is to reduce computational complexity of the fuzzy knowledge base rule selection by the 
development of a new method for finding optimal solutions in the neighborhood of Pareto-front. This 
neighbourhood is set by a linear constraint that describes the model accuracy compensation by its 
compactness. We estimate the constraint factors by the Pareto front end points, which correspond to 
the almost empty and almost filled knowledge bases, as well as by its upper limit that is found by the 
greedy algorithm on the basis of the ideas of the approximate Sahni method for the knapsack 
problem [2]. Computational complexity of this problem is quadratic and, therefore, it will not 
significantly increase the optimization time. Search for optimal solutions will be performed by a 
genetic algorithm.  

1. Mathematical statements of the problems 

Let us assume that 
 the sampling consisting from M pairs of experimental data about the influence of factors 

 nxxxX ,...,, 21  on the continuous output in the investigated dependence: 

  rr yX , , Mr ,1 , (1) 

where rX  is the input vector in the r-th line of the sampling; ry  – the corresponding output value; 
 set R  consisting from N  candidate rules to the fuzzy knowledge base, RN   
are known. 

The model, based on fuzzy rules RR   that ties inputs X  with the output y  of the dependence 
being investigated we designate as ),'( XRFy  . The root mean squared error in sampling [1] is 
chosen as the fuzzy model accuracy criterion: 

   



Mr

rr XRFy
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RRMSE
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2,'1)'( . (2) 

In a general case the task is to determine such set of rules R  that provides: 
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min)(

RC
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where )(RC  is the fuzzy model complexity determined by the number of rules  RRC )(  or by the 

completeness level of the knowledge base  
N
R

RC


)( . 

Multicriteria optimization problem (3) is transformed into the following scalar problems [2, 3]: 
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where *C  and *RMSE  are maximally permissible values of complexity and error.  
Statements (4) and (5) form a large region of feasible solutions, its considerable part being located 

far from the Pareto front (Fig.1а and 1b). We suggest writing the optimization problem constraint as  
 bRCaRRMSE  )()( , (6) 

where 0a  and 0b  are the parameters that could be chosen so that the region of feasible 
solutions will be  formed in the neighborhood of Pareto front (Fig. 1c). 

Using constraint (6), the following problems of selecting the fuzzy knowledge base rules are 
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formulated:  
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Fig. 1. The region of feasible solutions  

а) problem (4); b) problem (5); c) problems (7) and (8)  

2. Estimation of the linear constraint parameters 

To determine parameters a  and b  of constraint (6), it is sufficient to know corresponding 
characteristics of two knowledge bases that satisfy the user. Let us denote them as ),( 11 RMSEC  
and ),( 22 RMSEC . Then: 

 .
11

12

12













CaRMSEb
CC
RMSERMSEa  (9) 

Parameter a  could be interpreted as coefficient of accuracy compensation through compactness. 
It can be calculated from the user’s answer to the question “To what extent can the model accuracy 
be reduced if the number of rules is decreased by 1?” Then, in order to determine the second 
parameter b it is sufficient to know characteristics of one acceptable knowledge base.  

Parameters a  and b  may be determined by drawing a linear constraint through any two end 



INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING 

Наукові праці ВНТУ, 2012, № 3 4 

points of the Pareto front. One of the end points should be on the left and the second one – on the 
right (Fig. 2). Computational complexity of the full search in order to identify 5 end points of the 
Pareto front for knowledge bases consisting from 1, 2,  N–2, N–1 and N rules is quadratic )( 2NO  
and, therefore, such approach can be also applied to high-dimensionality problems.  

A linear constraint could be also drawn through two points of the learning curve in the form of 
dependence of the residual on the knowledge base complexity.  The learning curve is proposed to be 
built on the results of the greedy algorithm execution for selecting the rules. This algorithm consists 
in adding one rule to the knowledge base at each step, which results in maximum reduction of the 
residual. The obtained learning curve will never be lower than the Pareto front (see Fig. 2). As the 
initial base for the greedy algorithm a knowledge base containing 2 or N – 2 rules could be chosen 
from the Pareto front. The greedy algorithm has quadratic computational complexity.  

 
Fig. 2. For linear  constraint parameters calculation  

3. A genetic algorithm of solving the problem  

In order to solve the optimization problem, we use a genetic algorithm based on Pittsburg 
approach. Each chromosome of the population describes a fuzzy knowledge base with its own set of 
rules R . Each of N  genes of this chromosome can take the following values: 1 (if the corresponding 
rule gets into the knowledge base) and 0  (if it does not get there).  

The initial population is generated randomly but with the inclusion of suboptimal solutions found 
by the greedy algorithm.  

The probability of selecting a chromosome for crossover is determined as follows: 

 ,
2n

jnp 
  (10) 

where n  is the size of population; j  – rank of the chromosome that is determined by the fitness 
function.  

 -fraction of the chromosomes obtained as a result of crossover is subjected to mutation.  
Selection is carried out by a deterministic choice of n  best chromosomes. 

4. Computer experiments 

The experiments are carried out for singleton fuzzy knowledge bases where the antecedents of the 
rules are defined by fuzzy sets and the consequents – by numerical values [1]. As in our previous 
papers on the formalized multicriteria design of fuzzy knowledge bases [8 - 11], experiments are 
conducted using three target dependences (Fig. 3):  

 Growing – bay     ]14;2[],22;2[  ba ; (11) 
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 unimodal – 22 bay  , ]5;5[],3;7[  ba ; (12) 

 multiextremal – bay ))sin(1( 2 , ]2;5.0[],5;0[  ba . (13) 

For each dependence (11) – (13) a full singleton fuzzy knowledge base from 16N  rules is 
created ( Table 1). Fuzzification of the input variables has been carried out by Gaussian membership 
functions [1] (Fig. 4). Consequents of the rules are calculated by functions (11) - (13) with the 
arguments equal to the cores of fuzzy sets consisting from the antecedents of the rules. 

Table 1 

Full sets of rules ( R ) for each dependence 

№ a  b  y ,  
for  dependence (11) 

y , 
for  dependence (12) 

y , 
for dependence (13) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Very low 
Low 

Medium 
High 

Very low 
Low 

Medium 
High 

Very low 
Low 

Medium 
High 

Very low 
Low 

Medium 
High 

Very low 
Very low 
Very low 
Very low 

Low 
Low 
Low 
Low 

Medium 
Medium 
Medium 
Medium 

High 
High 
High 
High 

5,04 
14,04 
24,84 
33,84 
7,59 

21,14 
37,4 

50,95 
9,82 

23,37 
48,42 
65,96 
11,36 
31,64 
55,97 
76,25 

-71,91 
-48,94 
-45,27 
-62,14 
-46,08 
-23,11 
-19,44 
-36,3 

-31,08 
-8,1 
-4,44 
-21,3 

-31,91 
-8,94 
-5,27 

-22,14 

0,95 
0,81 
0,94 
0,79 
1,04 
1,23 
1,06 
1,26 
1,17 
2,02 
1,25 
2,17 
2,29 
3,04 
1,45 
3,40 

 
Fig. 3. Surfaces of dependences (11) – (13) 
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Fig. 4. Membership functions of the terms of input variables for:  

а) dependence (11); b) dependence (12); c) dependence (13)  
 
Parameters of the linear constraint in (7) – (8) are found for each experiment separately. First, 

using the greedy algorithm, we find the best knowledge bases with different numbers of rules for the 
problem with target dependence (11). Considering the obtained learning curve to be the reference, 
we set the desired value of the residual for the knowledge base with 4 rules so that it is slightly less 
than that in Fig. 5, for example, at the level of 0.55RMSE . As the second linear constraint point, a 
knowledge base with 10 rules is chosen with the   residual value being not higher than that for the 
full knowledge base, i.e. 22.0RMSE . Substituting this into (9), we obtain 0367.0a  
and 6968.0b . For dependence (12) a knowledge base  having 6 rules with the residual 

0.75RMSE   and knowledge base having 10 rules with the  residual 0.58RMSE   are considered 
to be acceptable. Substituting these values into (9), we obtain 0425.0a  and 005.1b . For 
dependence (13) a knowledge base with 9 rules with the residual 0365.0RMSE  and the residual 
compensation level 00125.0RMSE  we consider to be an acceptable one. Hence, 00125.0a  
and 0.0477500125.090365.0 b . 
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Fig. 5. Estimation of the constraint parameters for experiments with target dependence (11)  

 
The experiments were carried out for the following parameters of the genetic algorithm: size of 

the population 160n , the number of genes 16N , mutation pressure 3.0 , the number of 
epochs 10k . The obtained solutions of problems (7) and (8) are summarized in table 2. In each of 
the 6 cases the obtained knowledge bases are located on the Pareto front, i.e. they have the least  
residual with a fixed number of rules (fig. 6). The Pareto front as well as the upper limit of the region 
of feasible solutions were found in our previous papers [10, 11] using the exhaustive search among 
all possible combinations of the fuzzy knowledge base rules (Fig. 6). The computational complexity 
of the exhaustive search is exponential )2( NO  and, therefore, in all test problems 65536 variants of 
the fuzzy knowledge base are to be checked. The proposed genetic algorithm has found the global 
solution after going through 1600 variants for each problem.  

Table 2 

Results of the experiments 

Target dependence (11) (11) (12) (12) (13) (13) 
Problem statement (7) (8) (7) (8) (7) (8) 

 Constraint 
parameters 

a=-0,0367 
b=0,6968 

a=-0,0367 
b=0,6968 

a=-0,0425 
b=1,005 

a=-0,0425 
b=1,005 

a=-0,00125 
b=0,04775 

a=-0,00125 
b=0,04775 

Solution ( R ) (1; 2; 5; 6; 7; 
9; 10; 12; 16) 

(2; 3; 6; 7; 
11; 16) 

(1; 2; 4; 5; 
6; 7; 8; 

10; 11; 13; 
16) 

(1; 3; 6; 11; 
12) 

(2; 5; 7; 9; 
10; 11; 12; 
13; 14; 15; 

16) 

(1; 3; 11; 14; 
16) 

)'R(C   10 5 11 5 11 5 

)'R(RMSE   0,3098 0,5128 0,5134 0,7235 0,0334 0,0387 
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Fig. 6. Learning curves of the fuzzy knowledge base for: 

а) dependence (11); b) dependence (12); c) dependence (13)  

Conclusions 

A new method for solving one of the fuzzy identification problems that aims at selecting a fuzzy 
knowledge base rules taking into account accuracy and compactness is proposed. The novelty of the 
method consists in the use of the linear constraint instead of the limit restrictions on accuracy and 
complexity, which sets the level of compensation between these two conflicting criteria. Application 
of new constraints enables significant narrowing of the region of feasible solutions confining it to the 
neighborhood of Pareto front. The computer experiments have proved that with the new statement 
of the problem the genetic algorithm finds the global optimum after generating tens of times less 
variants of fuzzy knowledge bases than in the case of exhaustive search.  
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