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ALGEBRAIC CONSTRUCTION OF THE POLYNOMIAL BASIS
OF A SIX-NODE OCTAHEDRON

The paper presents second-degree polynomial bases for the finite element in the form of an octahedron
constructed by means of matrix calculus. The obtained functions are harmonics according to Laplace.
Geometric properties of the corresponding level surfaces are analyzed.
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Introduction

For numerical solution of the problems by the method of discrete elements tetrahedrons and
hexahedrons are widely used. Recently, octahedrons in combination with tetrahedrons came to be
used in dimensional lattices. Consequently, it became necessary to equip the octahedron, as a final
element, with its own system of basis functions.

Analysis of prior publications, the goal of the paper

The problem of building the basis of a seven-node octahedron with the nodes located in its
vertexes and barycentre is solved in [1, 2]. The authors of [1] propose a piecewise-linear basis of the
octahedron without giving the details of its construction and apply it for approximation of analytical
functions in the volumetric visualization problems. The author of [2] builds a quadratic basis using
Taylor expansion of the function of three independent variables in combination with the finite-
difference schemes. Construction of a hexahedron and an inscribed octahedron is used to solve the
problems of potential flow of ideal fluids in 3D. In some problems the central node is not required,
e.g. in the generalized Dirichlet problem for Laplace equation on the octahedron with discretely
given conditions on the boundary. Therefore, the idea emerged to build a six-node octahedron. Initial
results are presented in [3]. Two bases of the six-node octahedron model (piecewise-linear and
quadratic ones) are obtained from the corresponding bases of the seven-node model using the
condensation procedure.

The goal of the paper is to build a six-node polynomial basis (bases) of an octahedron by means
of matrix calculus and to investigate its geometrical properties.

The main part

Let us consider an octahedron with the center located in the origin of Oxyz coordinate system and
vertexes (nodes) being the tangent points of the octahedron of a unit-radius circumscribed sphere.
The coordinate axes are directed as shown in fig. 1. Let us assume that a certain physical
quantity @ (e.g. the temperature) is defined at each point of the octahedron and the values of

ﬁmctiond)(x, y,z) in the octahedron nodes are known and equal to @, (z' :1,_6) The problem is

formulated as follows: to find basis functions V,, i = 1,6 that satisfy the following conditions:
. 6
]\]i(xk’yk’zk):5ik’ i,k =10, ZNFL (1)
i=l

where 6, ; — Kronecker symbol, i — the number of a function, k£ — the number of a node.
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Fig. 1. Octahedron with 6 interpolation nodes

Let us compose the interpolation polynomial for function d)(x, y,z) in the form of a complete
second-degree polynomial:

D=, +0,X+ 0y +a,z+axX" +a)° +0,z° + Xy + oYz + o X2 . (2)

According to Lagrange interpolation formula, at any interior point of the octahedron the value of
function @ is given by

o=N"No, (3)

where N, (x, y,z) are polynomial basis functions of the Lagrange type. From conditions (1), (3) it is

. 1$
evident that in the octahedron center the value of interpolation polynomial ®(0,0,0)= gZd)i. The
i=1
168
last equality makes it possible to define the free coefficient @, of formula (2) as o, =—> @, .
i=1

The remaining nine unknowns ocl-(i = 2,10) are found from the system of linear algebraic equations:

1 6
D =—> Dty +as+0-a3+0-ay+0-0;

i=l1

1 6
q)“:_Zq)iia3+a6+0-a8+0-a9+0-a]0; 4

i=l1

1 6
Do o=—> Do, +a,+0-05+0-0y +0- 0ty

i=l

Investigating system (4) for compatibility, we conclude that the system is uncertain and the
unknowns o;\i = 2,7 are uniquely determined by the system of equalities:
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1 1
a2:§®]—§®3;

1 1
053—5(132—5(134;

1 1
425(1)5_5(1)6;

I D B (5)
a.=—0O +—P,——>» O ;
STy IS 6; i

:lq) lq) __z

2
o =t + 1o —-Z@
1T s Ty e T g4 i

The unknowns e o, o, o, can take any arbitrary real values. Hence, interpolation polynomial (2)
can be represented in the form of

6
d = Z]\fio(x,y,z)d)i + Xy + Qo yz + oy X2, (6)
i=l

where functions N/ (z' =1, ) are defined as:

1 1 1 1 1
N =t —x+—x =y —— 2%
BoeT 27 3 6" "6
1 1 1 1 1
N, =—+—pr—p?——x*—— 2% 7
247 ¢ 2y 3)7 6 6 (7
1 1 1 1 1
N)=—t—z+-72"——x"—=)*
676727 T3E Tt T

As the equality ogxy +ogyz + o, xz =0 1s valid at any node i of the octahedron and does not

depend on the coefficients oy, a,, ¢, , then assuming o ; = Zoc d) (j =89,10), where oc( )( =1 6)
i=1

— arbitrary real values, interpolation polynomial (6) can be represented in the form of (3), where
N, = NIO,3 + aél)’mxy + aél)’(3)yz + al((l))’(3)xz
N,,= N§,4 + ag(z)’(4)xy + aéz)’(“)yz + al(g)’(4)xz; (8)
N = NSO,6 + aés)’(é)xy + aés)’(é)yz + al(g)’(é)xz.

6
Verification of condition ) N; =1 shows that equality
i=1

( o 'xy + ag yz + al(o)xz) 0 9

i=

is satisfied at any interior point (x, v, z) of the octahedron. And this is possible if

Z} Z Zam =0. (10)

The obtained functions (8) are harmonic according to Laplace and coincide with the quadratic basis
of the six-node octahedron [3] if ag) = aéi) = 0‘1(6) =0,i= 1,_6
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Taking into account geometric isotropy of the octahedron, depending on the type of symmetry
different means to choose the coefficients aéi), aéi), a](é), i =1,6 of basis functions could be suggested

for both the nodes located on the same coordinate axis and for the nodes located on different
coordinate axes — one per each axis. If dissymmetry, axial and central symmetries are used for the
construction of form functions, we obtain four rules:

Table 1
Ny(x,3,2) = Ny (= x,,2) Ny(x,3,2) = Ny (= x,-y,2);
(I): N4(x’y’ ) Z(X’ y’Z) (H): N4(x’y’ ) (x’ y’ Z)
N6(x y’Z) S(X y’_Z) N6(x y’Z) ( X, Vo~ Z)

(I1I):

N3(x,y,2) = Ny (- 2, p:-2)
N4(x’y’ ) ( X,=V,z )’
N6(x’y’z):N5(x’_y’_ )

3(xy’Z) N( X, =)= Z)
(IV) N4(X,y, ) (

X—y,-z)
N6(x’y’z):N5(_x’_y’_ )

For neighboring nodes that belong to one (any) of the octahedron faces there are four different
variants of the permutation of coordinates in transition from one function to another, which are
realized by means of affine transformations of Oxyz system and namely:

Table 2

1: 2: 3: 4:
(x,y,2) > (y,2,x) (x,.2) > (=y.z,x) | (x,y.2)> (y,~zx) (x,y,2) >

It is evident that for any set of rules (one from each table 1 and 2) the number of free coefficients

a, o, o, i=1,6 can be reduced to three B, i=13,where g =a!", B, =V, B, =al).
8 9 10 i 1 8 2 9 3 10

Table 3 presents six-node polynomial bases of the octahedron obtained by combining the rules
from tables 1 and 2:

(v,2.—x)

Table 3
Configura- .
tion of the Basis functions Restrictions for J;._r(r)rf ﬂlle
rules ormula
1 1 1 1 1
N ,=—+— x +t—x—— ——z +PB.xyx z +B:xz;
1,3 6 3 > 6)’ 6 Bixy £B,yz 5
L1 N _1 1 +1 Lo 1oy + + . R 11
(L1) 24 = g+3y 2)"% —gx Byxy By yz £ B,xz; Bie (11)
1 1, 1 1, 1
Nig=—4—z"d—z——x"——y B, xy =B, yz = Pxz.
5.6 6 3 5 6 6)’ Byrxy £B,yz £ B,
N 1+1xz+1x 11 2+ B,xy £B,yz +Bsx
=_ — Yyt ——z+ + z + B.xz;
1,3 6 3 5 6)’ 6 XY TPy 3
1,2 N _1,1 +1 L F + : R 12
1,2) 2,4—g+3y 2y—gz —gx FP3xy ¥ Byz £ Pyxz; P; e (12)
1 1, 1 1, 1 ,_ _
Ne,=—+—z"F—z——x"—y " FBxyx z ¥ B3,xz.
5.6 6 3 5 6 6)’ Byxy £ Bsyz ¥ B,
1 1 1 1 1
Ny=—+— —xt k- x——y -——z +ley+[32yz+[33xz
w | T pen | o
N, ,=—+—1yt—yp——2> —— x> + B xy F B,z F B,xz;
247 ¢ 3y 2)’ p 6 Byxy + Bz + B,
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1 1, 1 I , 1 ,_ _
Ne,=—+—z"F—z——x"—y"FBxy+ z X 3,xz.
5.6 6 3 5 6 6)’ Byxy FByyz £B,
I 1, 1 1 , 1,
N,=—+—x"t—x——y ——z" 2B xy B, yz £ B;yxz;
1,3 6 3 > 6)’ 6 Bixy £B,yz 5
1 1 1 1 1 ,_ _
(1,4) N, :g+§y2 iEy—gzz —gxz T Byxy £Byyz +B,xz; B, eR (14)
I 1, 1 1, 1, _ _
Ne,=—+—z"t—z——x"——y " £B,xpF z ¥ [B,xz.
5.6 6 3 5 6 6)’ Byxy FBsyz B,
I 1, 1 1 , 1,
N,=—+—x"t—x——y ——z"£B,yz £ B,xz;
1,3 6 3 > 6)’ 6 Byz £,
1 1 1 1 1 B, =0,
(IL1) N2’4:g+§y2igy—gzz—gxzi[33xyi[32xz; B,.B. <R (15)
2°F3
1 1, 1 1, 1,
Ne,=—+—z"t—z——x"——y"+B,xp % Z.
566 T3 2776 7 Byxy £y
1 1, 1 1 , 1,
N,=—+—x"t—x——y" ——z"£B,yz £ B,xz;
1,3 6 3 > 6)’ 6 Byz £,
1 1 1 1 1 ,_ B, =0,
(112) Npg =ttty =2’ = F oyt Bz Bl B, <R (16)
2°F3
1 1, 1 1, 1 ,_
Neo=—+—z"F—z——x"—y"FBxp % Z.
5676 T3 2776 7 Byxy £y
I 1, 1 1, 1,
N,=—+—x"t—x——y ——z"£B,yz £ B,xz;
1,3 6 3 > 6)’ 6 Byz £,
1 1 1 1 1 _ B, =0,
(IL,3) N2,4:g+§y2igy—gzz—gxzi[%xwrﬁzﬂ; B,.B. <R (17)
2°F3
1 1, 1 1 , 1 ,_ _
Nig=—+—z"*t—z——x" ==y  FB,xy + B3z
56 ¢ T3 2776 7 Boxy +Bsy
1 1, 1 1, 1,
N,=—+—x"t—x——y" ——z" £B,yz £ B,xz;
1,3 6 3 > 6)’ 6 Byz £,
1 1 11 1 ,_ _ B, =0,
(IL4) Nz,4:g+§y2igy—gzz—gx%r[%xﬁﬁzﬂ; B,.B, € R (18)
2°F3
1 1, 1 1, 1, _
Ne,=—+—z"t—z——x"—y 2B, xpF Z.
5676 T3 2776 7 Byxy +Bsy
1 1 5, 1 1 » 1 5
Ni;=—4+—x"t—x—-——y" ——z" £ fixy =t Z;
1373 Rt Bixy+ By
1 1 1 1 =0,
(IIL,1) N4 :%+§y2iEy—gzz—gxziﬁlyziﬁzxz; E3 8, R (19)
1> P2
1 1, 1 1 » 1 ,
Neg=—+—2z">t—z——x"——y° B xy £ [Bxz.
56 =673 7275 e Baxy £ B
I 1, 1 1 , 1,
N,=—+—x"t—x—-——y ——z" B xyxPB,yz;
137 T3 2576V T Bixy B,y
1 1 1 1 _ B;=0,
(I1L,2) N2’4:g+§y2i§y—522—gX2+BlyZiBZXZ; [33[3 c R (20)
1> P2
1 1, 1 1, 1 ,_ _
Nyg=—4+—z"t—z——x"——y" FB,xy ¥+ PByxz.
5,6 6 3 > 6 6)’ Byxy F B,
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—

1 1

1
Ny=—+—x’t—x——y' =22 +Bxy+P,yz;
137 T3 5 g” Bixy B,y
1 1, 1 1, 1 ,_. _ B; =0,
(IIL,3) 24 T TRV EGY T T Pryz ¥ Poxz B,.B, € R 20
1 1, 1 I , 1 ,_
N ,=—+—z"Fxt—z——x"——y"FB,xy = PBxz.
5,6 6 3 > 6 6)’ Byoxy £,
I 1, 1 1 , 1,
Ni=—+—Xx"Et—x—-——y" ——z B xy£B,yz;
BT TN IS Brxy £B,y.
1 1, 1 1, 1, _ B; =0,
11,4 No =g 242y 2,2 1.2y T : -
(LIL4) 214 T TRV EGY T TN Pryz ¥ Poxz B,.B, € R (22)
1 1, 1 1, 1, _
N ,=—+—z"Fxt—z——x"——y " £B,xy ¥ B,xz.
5,6 6 3 > 6 6)’ Byxy F B,
I 1, 1 1 , 1,
N,=—+—x"t—x——y ——z"+Bxy+B,yz +Byxz;
1,3 6 3 > 6)’ 6 Bixy +B,yz + P
11 11 1 Pr+By+B; =0,
(Iv,1) N2’4:g+§y2 iEy—gzz_EXZ +Bsxy + By vz + B,xz; B, cR (23)
N o=tylpgl 1o ] 24 B,xy +Pyz +Pixz
=—+—z't—z——Xx" —— Z .
5676 3 > 6 6)’ 2XV T P3Y 1
I 1, 1 1 , 1,
Ni=—+=—x"*—x——y" ——z"+Bxy +PB,yz + PB;xz;
1,3 6 3 > 6)’ 6 Bixy +B,yz + P
1 1 11 1 B =B, —B5 =0,
(V) | Nyy= oty £y =2 = =By =Pz + By B cR (24)
1 1, 1 1, 1,
Ne,=—+—z"t—z——x"——y" =B, xy + B vz —PBxz.
5,6 6 3 5 6 6)’ Byxy +B3yz =B,
YL UL M 24 Bxy + P, yz + Paxz
= — — T~ — —_— —_—Z ;
137673 5 6)’ 6 XY TPyY 3
1 1 11 By =B, +B5 =0,
AV3) | Nyy= oty £y =2 = 4By =Bz =By B R (25)
1 1, 1 1, 1,
Nyg=—+—z"t—z——x"——y" = B,xy—B;yz +Pxz.
5,6 6 3 5 6 6)’ Byxy —Bsyz + B,
I 1, 1 1 , 1,
N,=—+—x"ft—x——y ——z"+PBxy+B,yz +Byxz;
1,3 6 3 > 6)’ 6 Bixy +B,yz + P
1 1 11 1 By +B,—B; =0,
(Iv,4) N2’4:g+§y2 iEy—gzz_gx2_B3xy+Blyz—[32xz; B. R (26)
1 1, 1 1, 1,
Ne,=—+—z"t—z——x"——y" +B,xy —Byz —PBxz.
5,6 6 3 5 6 6)’ Byoxy —Byyz =B,

It is evident that basis functions in table 3 as particular cases of functions (8) are harmonic
according to Laplace. Functions (23) — (26) satisfy the derivative constancy criterion for any values

of coefficients S, i =1,3 that do not contradict the conditions of table 3. Functions (11) — (22)

satisfy the derivative constancy criterion if 8, = B, = B3 =0, 1.e. in the case when these functions

coincide with the quadratic basis of the octahedron [3].
Investigation of equations (8)) using the invariants has shown that level surfaces corresponding to
the basis functions could be functions of the hyperbolic (a hyperboloid, cone, a two-sheet
hyperboloid) and parabolic (hyperbolic cylinder or a pair of intersecting surfaces) types, level
surfaces being the surfaces of rotation only for the quadratic basis of the six-node octahedron [3].

Haykosi npaui BHTY, 2011, Ne 4



RESEARCHING RESULTS APPLICATION

Conclusions, prospects

The paper presents second-degree polynomial bases of the six-node octahedron obtained by
means of the matrix calculus. Basis functions are harmonic according to Laplace. Geometrical
properties of the level surfaces corresponding to the basis functions have been studied. We are
planning to continue research on the interpolation properties of the obtained octahedron bases and
have every reason to believe that it is possible to obtain alternative bases (probably, non-linear ones)
of the six-node octahedron.
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