
INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Sc Te Sde 11, f 1

V. Yu. Kotsubynskiy, Cand. Sc. (Eng.), Assist. Prof.; R. S. Holovaha

IMPROVEMENT OF THE MESSAGES TRANSMISSION PROCESS, USING
FIX/FAX PROTOCOL IN FINANCIAL CLIENT-SERVER SYSTEMS

Problem dealing with of delays appearance during transmission of large volumes of information in the
sphere of electronic trade in financial markets is considered, modern methods of financial data organization
were studied, detailed analysis of the approaches to solution of described problem is realized.

Key words: data transmission, FIX-protocol, FAX- protocol.

Introduction. The sphere of electronic trade in financial markets attracts great attention since
rapid development of the information technologies and Internet . Due to modern facilities of
automation of this process there is no necessity for trader to be directly at the exchange, as he is
able to buy any assets with the help of his trade terminal, making orders through the Internet.

Wide spreading of electronic trade in financial markets gave the significance impulse to the
development of technologies in this sphere.

Survey of the previous research. In 1992 there had been elaborated the Financial Information
eXchange (FIX) protocol for the structural organization of the financial data, being transmitted.
FIX- protocol is the international standard for financial information transmission between
participants of exchange tradings in real time mode. FIX protocol is supported by the majority of the
A A2 :A F3 AA A2 3 3AA A -trading [1].

Usage of the FIX-protocol has such advantages:
- ideal structure of transmitted data, makes FIX-messages simple for reading both by

programme code and by man. FIX messages consist of sets of fields, separated from each
other by special code;

- FIX-protocol allows to check the integrity of data, being transmitted, since it determines the
length of message body and controls sum of all bytes;

- support of lost data returning. FIX protocol determines the field that corresponds to the
ordinal number of the message. If the sequence of data is violated, then each of parts will be
able to make inquiry for the lost messages;

- safety of data exchange. FIX-protocol supports authorization of both parts and data coding
using different methods [2].

Eventually, volumes of trading by financial assets increased considerably, causing the increase
of data volume, being transmitted, appearance of significant delay during message transfer and
failure of client-server systems to operate in real time mode.

The problem of delay appearance during messages transition, entailed by enlargement of data
volumes, transmitted in financial nets was discussed in 2004 in New York at the conference of
company FPL (FIX Protocol, Ltd. that possesses the rights and supports FIX-protocol
specification). The format of classic fields of FIX-protocol is considered to be rather quite
volumetric and its processing is complicated.
Delay of data delivery resulted in failure to hold tenders in real time mode and traders were not
able to trade. Thus, FIX-protocol had to be optimized.

In 2006 the first version of FAST-protocol (FAST 1.0) was issued. FAST (FIX Adapted for
STreaming) protocol is a technology, directed at optimization of data presentation in the net. It is
used for providing of high productive capacity and low delay during message transmission between
financial systems by means of messages compression with the help of different means [3 4].

FAST-protocol uses different technologies for data compression:
- data coding of messages, namely usage of samples. Samples determine data that transmitted

and their sequence, that allows to exclude transmission of tags, identifying the fields.
- Coding of the level of FIX-message fields. FAST-protocol divides field into different types,

INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Sc Te Sde 11, f 2 2

allows to avoid generally, or ensure partial transition of appropriate data;
volume limitation according to type of data that being transmitted.

Usage of Stop Bit. Coding of symbol SOH divides FIX-message fields, in values of the most
coding data [5].

FAST-protocol allows to ensure considerable data compression during their transmission, but
another problem appears additional processes during message transportation, namely coding and
decoding. While inefficient realization of functionality of these processes, time on their fulfillment
will be significant, therefore usage of FAST may be useless.

Fig. 1. Comparison of FIX- and FAST- protocol usage during message transition

Modern electronic system for internet-trading ensure creation of commercial operations with
graphic interface, therefore all financial data are submitted to trader in pure form. On program level
it means that after decoding process the system processes FIX-messages and transmits
corresponding values for displaying it for user.

Thus, complete system, that ensures data transmission from exchange server to graphical
displaying for client, requests appearance of several processes including; data reading from
exchange information channel, data decoding, messages processing, transmission of corresponding
values to the client.

Such electronic trade in financial markets is carried out in real time mode, delay during data
transmission should be low, thus importance of time minimization for fulfillment of above-
mentioned processes is obvious.

The objective of the paper is improvement of the system throughput during financial data
transmission from exchange server to obtaining of corresponding values by the client.

Materials and results of research. Nowadays there exist known methods of time optimization
, necessary to fulfillment of above mentioned processes. Let us carry out detailed analysis and
realize by programme each of the methods.

1. Paralleling of streams. That is, programme code realization with the possibility of different

INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Sc Te Sde 11, f 2 3

tasks execution in different streams. This approach ensures asynchronous functioning of several
processes simultaneously, that, in its turn, increases rate of code fulfillment several times,
depending on the number of created streams.

In order to increase the rate of tasks realization, it is expedient to realize the programming code
so that simultaneously not more streams be operational than the number of processor kirnals are
available in the system. In other case, tasks will be executed according to queue, that corresponds to
synchronous execution, consequently it makes no sense to use parallel streams.

As for system, being elaborated, it is expedient to use four streams, that will realize such
functionality as:

- Reading of coded data (FAST-message) in information channel;
- message decoding in FIX format;
- FIX-message processing;
- Transmission of corresponding data to one or more clients.
It is obvious, that usage for above considered system of paralleling approach of streams increases

programme rate, consequently decreases delay during data transmission from exchange server 4
times (for 4 nuclear processor).

2. Factory of objects. For programmes the main goals of which are data transmission, creation of
new objects is critical moment, as it favors memory allocation, that , in its turn, is labour-
consuming process, which slows down the whole system. Therefore, it is reasonable to create all
necessary objects during system initialization in order to avoid unnecessary delays, that is not
always possible in practice.

It is necessary to create new object of the FIX-message during each new data arrival fro exchange
server for considered system. This object will save coded data of FAST-message for its further
processing. Object factory allows to get rid of periodicity of new object creation. Realization of this
functionality is realized in such a way:

- certain number of FIX objects are being created during system initialization, that will be
used as required;

- after the usage of all objects, created during initialization, new objects will be created during
further inquires to the factory.

It is obvious that this approach in any case has advantages, i.e. influences the reduction of time
during data transmission to client. But the given value is in direct proportion to number of
messages, transmitted from exchange server and the size, correspondingly, of the objects factory
itself, i.e. the number of objects, to be created during initialization.

Let us carry out testing of factory extracting 1 million.of new FIX objects:

Fig. 2. Analysis of objects factory application

INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Sc Te Sde 11, f 2 4

Results of test are presented in Fig. 2, show that time spent on creation of new object every time
as required, is greater (approximately 20 times) than the time that approaches zero during the usage
of object factory.

We are able to determine any size of factory, i. e. number of objects to be created during system
initialization, that willinfluence only main memory.

3. Direct work with bytes arrays and applying bit-wise operations. Since all digital information in
computer systems is presented in the form of bytes, it is obvious, that work directly with them
requires the least time losses in comparison with bytes reducing to these or other types of data, that
are more suitable for work.

As we have a task to increase the throughput of transmission system, i.e. decrease time needed
for message processing, it is expedient, if possible, to ensure programme code operation directly
with the bytes. Let us apply such an approach while decoding input data, i.e.FASR-
messages,arriving from exchange server in the form of bytes arrays:

1) offset=0;
while (offset < buffer.length-1) {

value = (value << 7) | (buffer[offset++]);
}
value = (value << 7) | (buffer[offset++] & Byte.MAX_VALUE);

2) Integer intDecodedVal = Integer.parseInt(strBuffer);
StringBuilder intDecBinSb = new StringBuilder(Integer.toBinaryString(intDecodedVal));
for(int i = intDecBinSb.length()-8; i >=0; i-=8) {

intDecBinSb.deleteCharAt(i);
}
int value = Integer.parseInt(intDecBinSb.toString(), 2);

Direct work with bytes arrays in the example 1 allows to apply bit-wise operations, which, taken
together, provide considerable advantages while usage (approximately 10 times as compared with
the example 2).

Since it is quite obvious that program code of the example 2 includes redundant operations, such
as byte conversion into binary code, that is redundant as compared with the example 1 an creation of
new objects, as it was described in point 2.

Fig. 3. Analysis of bit wise operations application

INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Sc Te Sde 11, f 2 5

4. Universality dispossession of program code. It is obvious that code universality substantially
reduces its volume, but at the same time, decreases its operation rate. For the majority of
programmes, the given fact is not of primary importance, that is why, it is not paid much attention
to. But for programming systems intended for message transmission, where data stream is high and
main evaluation criterion is transmission rate, code universality can considerably influence the time
of information processing.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3 4 5 6 7 8 9

test number1. Application of universal code

2. Division of programme code universality

Fig. 4. Analysis of code universality application

In the developed system, in order to reach the most efficient result, it is necessary to provide the
division of the total universal functionality. We will perform the given approach for the process of
messages decoding, as FAST protocol provides the distribution of all data into categories, which
are defined in the following way:

1. Fields operators FAST-protocol describes 7 types of field operators, that determine the
sequence of actions to be applied to various fields of FIX-message

2. Nullable fields. For such fields, d 3 I 3 A I
A A AA I A A 3

field parameters.
3. Data types. FAST-protocol describes 6 types of data, requiring corresponding rule, applied for

their decoding.
Thus, having divided the given functionality, we obtain 7 2 6 = 84 classes, which define rather

large volume, but at the same time considerable gain of time (approximately 20 times, as shown in
Fig. 4).

Data obtained as a result of the research, reflect the results of improvement of existing
approaches to realization of FAST-coding/decoding process, carried out under the order of
jettekfix.com company.

Conclusions. The given paper considers problems, actual while transmission of large volumes of
data in the systems of e-trade on financial markets, modern approaches to the solution of these
problems are optimized, the analysis of their realization is performed. As a result of research,
carried out, it has been proved that the application of the suggested techniques allows to increase the
throughput of data transmission system form exchange server approximately 4 times, and, in
particular, FAST-messages decoding process-50times.

INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Sc Te Sde 11, f 2 6

REFERENCES
1. . 3 /[b]]X aca] / X abcc

http://ru.wikipedia.org/wiki/Financial_Information_eXchange.
2. Lamoureux Robert. Financial information exchange protocol / Robert Lamoureux // FIX Protocol Ltd. 2001.

280 p.
, 3 /[b]]X aca0 X abcc tp://en.wikipedia.org/wiki/FAST_protocol.

4. Rosenborg David. FAST Protocol Technical Overview. / David Rosenborg. London: FIX Protocol Ltd. 2006.
10 p.

5. Rosenborg David. FAST Specification / David Rosenborg. London: FIX Protocol Ltd. 2006. 45 p.

Volodymyr Kotsubynskiy Cand. Sc. (Eng.), Assistant Professor with the Department of Automation and
Information Measuring Engineering.

Roman Holovaha Student, Department of Automation and Information Measuring Engineering.
Vinnytsia National Technical University.

http://ru.wikipedia.org/wiki/Financial_Information_eXchange.
http://en.wikipedia.org/wiki/FAST_protocol.

