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DUCTILITY OF METALS AT NON-MONOTOUS LOADING

The paper considers the method of metals ductility evaluation at non-monotonous loading the, the given
method applies the guiding tensor of deformations increment, its main components values are defined by
Nadai-Lode parameter, the method is used for evaluation of non-monotonicity influence on the value of
ductility resource used. The study of the process of transversal extrusion with further upsetting is performed.
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In the majority of cases, plastic metal working is accompanied by non-monotonous plastic
deformation of metals. Deformability criteria, based on scalar model of damages accumulation [1,
2, 3], do not allow to obtain real evaluation of plasticity in such processes. In the given paper
boundary deformation is taken as the reference of ductility while non-monotonous loading.
Boundary deformation is defined by the formula

e, =[&dr. (1)
0

where ¢, — is the intensity of deformation rates, #; — is deformation time before the destruction.

In [3] the criterion for evaluation of metals ductility while non-monotonous loading is suggested.
Condition of distribution is assumed to be

Sy =1, )
i=1

where n — is a number of deformation steps, within the limits of which the form of stressed state
does not change, a; — is the magnitude, the value of which depends on the form of stressed state,
— is the resource of ductility, used at the given stage.
Magnitude y; is defined by the formula
Ae, (17,)

" el
where Ae,(7;) is the increment in deformation degree at i step if 7, = const, eq(77;) —is limiting
deformation value while simple loading in conditions of stressed sate of i-th deformation step, i.e. ,
if 77=const.

As it is shown in [4] for evaluation of metals ductility while non-monotonous loading it is
suggested to apply tensor of damages, components of which are defined in the following manner.

V= _fF(e:,ﬂaﬂa )ﬂ[/de:: (3)
0

30 . . g . . .
where 17 =— — is the index of stressed state rigidity, & = %gijgij — is average stress, i, — is Nadai-
o

u

t
Lode parameter, ¢, = jg'udz- — is deformation degree, ¢ — is time of deformation from the moment of
0
plastic deformation start to considered deformation state.
The components of guiding tensor of deformations increment f; equal

2 dg;
A,:‘/— L, 4
Py 3 de, ®

Function F(e, n,u.) is the characteristic of material. Condition of destruction, suggested in [4],
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has the form

vy yi=1. (5)
Applying destruction condition (5) the solutions of problems of two-stage, cyclic and compound
loading are obtained. This proves the validity of tensor model.
V. M. Mikhailevych [5] suggested tensor-nonlinear model, according to which the components
of damages tensor are defined by the formula

v, = f( 60,10, e ©
0
where A and B — functions, which depend on loading conditions and mechanical properties of the
material.

Calculations of the value of ductility resource used, applying the above-mentioned criteria are
rather labour-consuming, as they require determination of F(e;, 7, 1), A, B, functions as well as
Bi(e,) dependences.

The given research suggests the following model for the description of damages accumulation
process at non-monotonous plastic deformation. Since the components of guiding tensor are defined
by the formula (4), then applying physical equations of plastic flow theory

_3de,

de; 2o S, (7
we find. that
e ®
or
38,
By = \/; G—’ ; )
where S — are components of stresses deviator, o; — is the intensity of stress.
Let us present tensor o in the form
0;;=S;j+ 00, (10)
where o= lgl_jgij — is average stress.

Besides, we will apply the already known relations

S+S+8=0, 20 =(S, =8, ) +(S, -8, ) +(S; -5, ). (12)
After the solution of the system (11), (12) we find
S o_glu=3 S _ 1 2, S 1 p+3 (13)

It follows from (4) and (13) that the main components of tensor f3;; equal
_ 1 u -3 1 2u, _ 1 u +3 14
D N B BTSN S S 1) (14)
A \/g,/,u;+3 ? \/g,/,u§+3 A \/g,/,uj+3

It is assumed that in case of non-monotonous loading the destruction occurs if certain function of
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tensor yj;; invariants reaches certain value. The first invariant of this tensor equals zero due to
incompressibility of the material f;+/.+/;=0. Without taking into consideration the third invariant
destruction condition may be written as

Wity +y; =1. (15)

To define the type of function F(e; 17,115), that is the part of (3), let us consider simple loading, at
which £, i, 1> remain constant, then [4]

vy =B, [ Fle,n.u,)de, = Byole.n u,) (16)
0

where ple, 7. u,)= | Fle,n.41, e, (17)
0

As B} + B; + p: =1 it follows from (15) that while destruction, if e~e4, T0 @(ey, 17,11,)=1. Besides

@(0,1,145)=0. (18)
Complying these conditions, we assume, that [4]

p=(-a)——+a—, (19)
ep (77’ ;Llo' ) ep
Where e,(n, 1) — is the surface of boundary deformations, a — is the constant, the value of which
depends on mechanical characteristics of the metal. In the given paper a is assumed to be equal
a=0,48.
Complying with the relations (3), (17), (19) we assume that in general case

eU

e, de.
=||l-a+2a ! : . (20)
l//1 -(.7.[ ep (77’/10 )%1 ep(ﬂ’/’lo')

Similar expressions can be obtained for y, and w3, which compose the condition of destruction
(15).

We use destruction criterion (15) for investigation of the process of lateral pressing out with
further upsetting of cylinder blanks, made of steel 10. Flow diagram of the process is shown in Fig
1. At the first stage the process of lateral pressing out is performed, at the second stage-the upsetting
of the obtained flange is realized (Fig 1). Calculation of the stressed-strained state was performed
by means of coordinate grids method, in this case, the technique suggested in [6] was applied. The
process of pressing out and the process of upsetting were performed in three stages. Ways of
deformation 7(e;), u(e;) were constructed, taken into account the influence of main technological
parameters: relative thickness of the flange h/d, and relative value of curving edge r/dy. As the ways
of deformation is coordinates e;, 7, tspractically do not depend on the material, for investigation of
the stressed- strained state the samples made of antimonid lead (dy=20 mm, 1)=60 mm), cut into
pieces were used. By means of sharpened cutting tool rectangular dividing grid, with 2 mm base is
applied on polished surface of one of the halves of assembled piece. Then the pieces were soldered
and pressing out of separate pieces to different degrees of deformation was performed in three
stages. Three pieces, obtained at the end of each transition of lateral pressing out, were used for
realization of three transitions of contour upsetting. Thus, each piece characterizes strained state at
the end of each stage. At the end of state the pieces were disoldered and the coordinates of
deformed grid nodes were measured.
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Fig. 1. Flow diagram of the process of lateral pressing out with further upsetting of the obtained flange

In addition, dividing grid was applied on lateral surface of pieces, made of steel 10, then lateral
pressing out and contour upsetting was performed in the same manner as pieces, made of lead were
deformed.

Accumulated deformation was determined by the formula

t
e, =Iéid1,
0

where &, is the intensity of deformation rate, ¢ — is time of deformation.

Components of stresses deviator were calculated by the relations, allowing to take into account the
influence of plastic deformation non monotonousness [7], that occurs in the considered process

e d’z,
S, =20, (e.) L 1(1- ple ole:)- ole: — <) d:;’f (e Me:. @1)

3 e 3

u 0 u

Dependences fe;), p(e-e!) for steel 10 were obtained experimentally, applying the technique
[7]. Experimental results were approximated by the functions

£=0,34+0,66exp(-62¢;), (22)
9=0,19+0,81(-22,3(e;- e’ )"*"). (23)

Constants of (22) and (23) were defined, applying the method of least squares.
Components of stress tensor were determined by integrating balance differential equations

do, 0Or, O0,-0,

L+ + =0
or Oz r (24)
or, Oo, T, ’
—E 4+ —=+==0
or oz r
using integral equation
R
P=2rx j ordr, (25)
0

where r — is the radius of deformed piece, P — is the effort, measured in the process of deformation
of investigated piece.

The obtained results of stresses and deformations calculations were used for construction of
loading ways 7(e;), tis(e;), as well as for calculation of fi values.
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The surface of boundary deformations for steel 10was approximated by the dependence,
obtained in [6]

ep(1,15)=0,68 exp(0,43 10,91 1). (26)
The value of the ductility resource used was calculated by the formula
v=yl sy (27

For evaluation of geometric parameters of lateral pressing out process with further upsetting on
the ductility we carried out calculations of the ductility resource used i by the formula (27) for
three cases: 1 — relative value of curve radius of transition edge 1/dy=0 and relative thickness of the
flange h/dy=0,141; 2 — r/d¢=0,106 and h/dy=0,236; 3 — 1/dy=0,213 and h/dy=0,33. From the results of
the calculation of ductility resource used value y, it follows that the third case is optimal. For
instance, if the diameter of the flange d=36mm (dy=20mm), then i in dangerous point equals for
the first case y=0,620, for the second case - =0,510, and for the third case - y=0,382, that is for
investigated interval of h/dy and r/d, values the increase of these results in considerable reduction of
V.

The difference between the values of y, obtained by the formula (27) and experimental data does
not exceed 20 %. It should be noted that the usage of the peculiarities of non-monotones of plastic
deformation allows to obtain flanges, the diameter of which exceeds the diameter of flange,
obtained by means of conventional lateral pressing out by 60 — 80%.
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