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DUCTILITY OF METALS AT NON-MONOTOUS LOADING 
The paper considers the method of metals ductility evaluation at non-monotonous loading the, the given 

method applies the guiding tensor of deformations increment, its main components values are defined by 
Nadai-Lode parameter, the method is used for evaluation of non-monotonicity influence on the value of 
ductility resource used. The study of the process of transversal extrusion with further upsetting is performed. 
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In the majority of cases, plastic metal working is accompanied by non-monotonous plastic 
deformation of metals. Deformability criteria, based on scalar model of damages accumulation [1, 
2, 3], do not allow to obtain real evaluation of plasticity in such processes. In the given paper 
boundary deformation is taken as the reference of ductility while non-monotonous loading. 
Boundary deformation is defined by the formula  
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where uε&  – is the intensity of deformation rates, td – is deformation time before the destruction. 
In [3] the criterion for evaluation of metals ductility while non-monotonous loading is suggested. 

Condition of distribution is assumed to be  
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where n – is a number of deformation steps, within the limits of which the form of stressed state 
does not change, аі – is the magnitude, the value of which depends on the form of stressed state, ψі 
– is the resource of ductility, used at the given stage. 

Magnitude ψі is defined by the formula 
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where Δеu(ηі) is the increment in deformation degree at i-th step if ηi = const, еd(ηі) –is limiting 
deformation value while simple loading in conditions of stressed sate of і-th deformation step, i.e. , 
if ηі=const. 

As it is shown in [4] for evaluation of metals ductility while non-monotonous loading it is 
suggested to apply tensor of damages, components of which are defined in the following manner.  
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τε&  – is deformation degree, t – is time of deformation from the moment of 

plastic deformation start to considered deformation state. 
The components of guiding tensor of deformations increment βij equal 
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Function F(eu,η,μσ) is the characteristic of material. Condition of destruction, suggested in [4], 
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has the form 
 ψijψij=1. (5) 

Applying destruction condition (5) the solutions of problems of two-stage, cyclic and compound 
loading are obtained. This proves the validity of tensor model. 

V. M. Mikhailevych [5] suggested tensor-nonlinear model, according to which the components 
of damages tensor are defined by the formula 
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where А and В – functions, which depend on loading conditions and mechanical properties of the 
material.  

Calculations of the value of ductility resource used, applying the above-mentioned criteria are 
rather labour-consuming, as they require determination of F(ei,η,μσ), А, В, functions as well as 
βij(eu) dependences.  

The given research suggests the following model for the description of damages accumulation 
process at non-monotonous plastic deformation. Since the components of guiding tensor are defined 
by the formula (4), then applying physical equations of plastic flow theory 
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we find. that 
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where  Sij – are components of stresses deviator, σu – is the intensity of stress. 
Let us present tensor σij in the form  

 σij=Sij+σδij, (10) 

where ijijδσσ
3
1

=  – is average stress. 

Besides, we will apply the already known relations 
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After the solution of the system (11), (12) we find  
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It follows from (4) and (13) that the main components of tensor βij equal 
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It is assumed that in case of non-monotonous loading the destruction occurs if certain function of 
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tensor ψij invariants reaches certain value. The first invariant of this tensor equals zero due to 
incompressibility of the material β1+β2+β3=0. Without taking into consideration the third invariant 
destruction condition may be written as 
 12
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To define the type of function F(ei,η,μσ), that is the part of (3), let us consider simple loading, at 
which βij, η, μσ  remain constant, then [4] 
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1 =++ βββ  it follows from (15) that while destruction, if ei=ed, то ϕ(ed,η,μσ)=1. Besides 

 ϕ(0,η,μσ)=0. (18) 
Complying these conditions, we assume, that [4] 
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Where еd(η,μσ) – is the surface of boundary deformations, а – is the constant, the value of which 
depends on mechanical characteristics of the metal. In the given paper а is assumed to be equal 
а=0,48. 

Complying with the relations (3), (17), (19) we assume that in general case 
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Similar expressions can be obtained for ψ2 and ψ3, which compose the condition of destruction 
(15). 

We use destruction criterion (15) for investigation of the process of lateral pressing out with 
further upsetting of cylinder blanks, made of steel 10. Flow diagram of the process is shown in Fig 
1. At the first stage the process of lateral pressing out is performed, at the second stage-the upsetting 
of the obtained flange is realized (Fig 1). Calculation of the stressed-strained state was performed 
by means of coordinate grids method, in this case, the technique suggested in [6] was applied. The 
process of pressing out and the process of upsetting were performed in three stages. Ways of 
deformation η(еi), μσ(еi) were constructed, taken into account the influence of main technological 
parameters: relative thickness of the flange h/d0 and relative value of curving edge r/d0.  As the ways 
of deformation is coordinates еi, η, μσ practically do not depend on the material, for investigation of 
the stressed- strained state the samples made of antimonid lead (d0=20 mm, l0=60 mm), cut into 
pieces were used. By means of sharpened cutting tool rectangular dividing grid, with 2 mm base is 
applied on polished surface of one of the halves of assembled piece. Then the pieces were soldered 
and pressing out of separate pieces to different degrees of deformation was performed in three 
stages. Three pieces, obtained at the end of each transition of lateral pressing out, were used for 
realization of three transitions of contour upsetting. Thus, each piece characterizes strained state at 
the end of each stage. At the end of state the pieces were disoldered and the coordinates of 
deformed grid nodes were measured. 
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Fig. 1. Flow diagram of the process of lateral pressing out with further upsetting of the obtained flange 

 
In addition, dividing grid was applied on lateral surface of pieces, made of steel 10, then lateral 

pressing out and contour upsetting was performed in the same manner as pieces, made of lead were 
deformed. 

Accumulated deformation was determined by the formula 

∫=
t

0
ii de τε& , 

where iε&  is the intensity of deformation rate, t – is time of deformation. 
Components of stresses deviator were calculated by the relations, allowing to take into account the 
influence of plastic deformation non monotonousness [7], that occurs in the considered process 
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Dependences β(еi), ϕ(еi- 0
ie ) for steel 10 were obtained experimentally, applying the technique 

[7]. Experimental results were approximated by the functions 
 β=0,34+0,66exp(-62ei), (22) 
 ϕ=0,19+0,81(-22,3(ei- 0

ue )0,806). (23) 

Constants of (22) and (23) were defined, applying the method of least squares. 
Components of stress tensor were determined by integrating balance differential equations 
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using integral equation 

 ∫=
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where r – is the radius of deformed piece, Р – is the effort, measured in the process of deformation 
of investigated piece. 

The obtained results of stresses and deformations calculations were used for construction of 
loading ways η(еi), μσ(еi), as well as for calculation of βi values. 
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The surface of boundary deformations for steel 10was approximated by the dependence, 
obtained in [6] 
 ep(η,μσ)=0,68 exp(0,43μσ-0,91η). (26) 

The value of the ductility resource used was calculated by the formula 
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For evaluation of geometric parameters of lateral pressing out process with further upsetting on 
the ductility we carried out calculations of the ductility resource used ψ by the formula (27) for 
three cases: 1 – relative value of curve radius of transition edge r/d0=0 and relative thickness of the 
flange h/d0=0,141; 2 – r/d0=0,106 and h/d0=0,236; 3 – r/d0=0,213 and h/d0=0,33. From the results of 
the calculation of ductility resource used value ψ, it follows that the third case is optimal. For 
instance, if the diameter of the flange d=36mm (d0=20mm), then ψ in dangerous point equals for 
the first case ψ=0,620, for the second case - ψ=0,510, and for the third case - ψ=0,382, that is for 
investigated interval of h/d0 and r/d0 values the increase of these results in considerable reduction of 
ψ. 

The difference between the values of ψ, obtained by the formula (27) and experimental data does 
not exceed 20 %. It should be noted that the usage of the peculiarities of non-monotones of plastic 
deformation allows to obtain flanges, the diameter of which exceeds the diameter of flange, 
obtained by means of conventional lateral pressing out by 60 – 80%. 
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