
INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Наукові праці ВНТУ, 2009, № 4 1

T. V. Grishchuk, Cand. Sc. (Eng.), Ass. Prof.; N. M. Bykov, Cand. Sc. (Eng.), Prof.

DISCOURSE MODELING IN THE SYSTEMS WITH VOICE INTERFACES

Modified syntax of CF (context-free) grammars is presented. The possibility of this syntax
application for obtaining the interpreted code of input commands is demonstrated.

 Key words: CF grammar, deduction trees, speech recognition, voice interface.

Speech is a natural form of communication between people. Therefore, man-machine interface
realization in modern engineering systems based on the voice input-output of information is a
prospective trend in the development of intellectual control systems.

Natural speech processing consists in the formulation and research of efficient computer
mechanisms for providing natural-language communication with a computer. To the research
objects belong:

− natural languages themselves;
− using natural language for both communication between people and man-computer
communication.

Research task is the creation of efficient computer models of man-computer communication.
Such statement of the problem distinguishes natural language processing (NLP) from the problems
of traditional linguistics and other disciplines studying natural languages and allows referring it to
the field of artificial intellect [1].

General and applied NLP are distinguished. The task of applied NLP consists in the
development of models of using speech by a man. Applied NLP does not deal with modeling but
directly with the ability of man-computer communication using natural language.

The majority of speech recognition systems (SRS) are designed for solving specific control
tasks (control of devices, processes etc.) and so their grammatical level requires natural language
formalization. In general case formal description of discourse with the help of context-free
grammars (CF grammars) is sufficient. The most common syntax for reading CF grammars is
represented by Backus- Naur forms (BNF) [2].

Deduction tree (sometimes it is referred to as a tree of syntax analysis) is considered to be
the most common method for representation of a certain non-empty chain deduction. Let’s consider
a simple rule for deduction of one sentence: Main (GoCommand (GoVerb ("Go"), HomeDir
("home"))). The deduction tree for this rule is presented in fig. 1.

Main

GoCommand

GoVerb HomeDir

“Go” “home”

Fig. 1. Example of a deduction tree

Algorithmic and mathematical provision of the voice interface program module must solve two
main problems. First, such organization of input grammar must be provided, that would make it
possible to do without storing the rules themselves. Second, CF grammar syntax and mathematical
model of CF grammar phrases organization must give the possibility to transform any input phrase

INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Наукові праці ВНТУ, 2009, № 4 2

into the interpreted code with the ability of using structural or object-oriented approaches.
In this paper a new method of recording CF grammars is presented that provides the basis for

building the grammar graph. Deduction of the grammar phrases is performed by means of going
along the graph width, which enables parallel deduction of all grammar phrases in order to increase
the recognition speed [3].

Vertexes of the graph are the terminals and its arcs represent grammar rules. The main
disadvantage of this approach is the loss of information about the location of non-terminal symbols,
which is necessary for recognition process control while going through all grammar chains of
the presented graph. Non terminal symbols are represented by branching points. As one and
the same terminal can play both a separate role or be a part of the non-terminal, then while
generating chains on the graph a complex grammatical control is required.

This example describes the situation when a user can change the style of the text, written by
him, to a “bold” or “italic” one.

Let’s write the grammar in BNF:
Grammar “Format”

< main > : make < object > < style > |

 bold it;

< object > : it | sentence;

< style > : bold | italic;

This grammar is described through five terminal symbols (make, it, sentence, bold, italic) and
2 non-terminal symbols (object, style).

Discourse is described by the following graph:

Main -
start

1

make
2

bold
3

sentence
4

it
5

Main -
finish

7

italic
6

Fig. 2. Graph of the “Format” grammar

In this case it is necessary to perform grammatical control of the chain after exit from any of

the terminals. Proceeding from fig. 2 for the presented graph cyclic repetition for «bold it» phrase is
possible, which is, naturally, forbidden by the grammar.

The existing methods of grammatical deduction are also characterized by the complexity
connected with different types of uncertainties, main of them being syntax uncertainty, when one
and the same symbol is included into several grammar rules simultaneously. In order to eliminate
such uncertainty it is necessary to introduce additional syntax control operations.

For simplification of the grammar control procedure, it is suggested to change the form of the
grammar graph by introduction of additional vertexes that will represent inputs and outputs of non-
terminal symbols. So each rule of the type ><>=< baS will be transformed into the form

>><< sbbas .
Fig. 3 shows a modified grammar graph. From simple visual analysis of the graph it is evident

that additional usage of grammar rules is no longer required.

INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Наукові праці ВНТУ, 2009, № 4 3

< main
1

make
2

sentence
4

it
5

main >
11

< object
4

 object >
6

bold
8

italic
9

< style
7

 style >
10

 Fig. 3. The grammar graph in the modified syntax

The basic operation principle of voice interface consists in the transformation of a user’s input
command, given in a natural language, into a program code in the interpreter language that will be
run immediately. From the previous example it is clear that classic form of recording enables
simple description of the user’s input command, but it requires additional means for input command
transformation into output program code. In order to perform the required transformation it is
necessary to obtain such deduction tree on the basis of the initial one, that would contain terminal
symbols on its branches and these terminal symbols would actually be the parts of the interpreted
program code.

Classical approach has the following advantages:
− input part description is separated from the output grammar building part;
− step-by-step formation of the output tree makes it possible to follow the formation process,
which is helpful while editing the grammar;
− there exists a possibility to determine incorrect or undesirable commands.

 The disadvantages of the approach are as follows:
− while describing transformation rules it is necessary to have a clear idea about the structure
of the tree and about the influence of each step on the resulting tree;
− the complexity of changes is manifested in the following: introduction of changes at one
level involves the necessity to change the rules at subsequent levels.

The second advantage of the proposed bracket syntax of grammar description consists in the
ability to build the graphs of the attribute grammars on its basis. In this case elements of the output
language (of the script that will finally fulfill the command) are associated with the graph vertexes.
This recording method enables implementation of the structural programming principle in the
process of complex grammatical structures development, e. g. at higher levels of grammar rules
general structure of the given script can be described while at the lower grammar levels actual
parameters can be directly obtained.

Let’s consider an example of the attribute grammar. This grammar describes four phrases, each
of them being translated into a certain conditional script.

<main(script: my_color, my_object)>:
draw <color(my_color)> <object(my_object)>

 {script = “Draw (” + my_object + “,” + my_color “);”;};
<color(color)>:
 red {color = “red”;} |
 green {color = “green”;};
<object(object)>:
 rectangle {object = “rectangle”;} |
 circle {object = “circle”;}

INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Наукові праці ВНТУ, 2009, № 4 4

In the bracket syntax this grammar has the form of:

<main draw <color color> <object object> {α1} main>
<color red {α2} color>
<color green {α3} color>
<object rectangle {α4} object>
<object circle {α5} object>,

where:
{α1} = {script = “Draw (” + my_object + “,” + my_color “);”;}
{α2} = {color = “red”;}
{α3} = {color = “green”;}
{α4} = {object = “rectangle”;}
{α5} = {object = “circle”;}.

Fig. 3 shows a graph of the given grammar.

<main main>draw

rectangle{α4}

circle{α5}

<main main>

draw <color color> <object object> {α1}

<color

red

color>

green

red {α2}

green{α3}

<object

rectangle

object>

circle

Fig. 4. The example of a graph for attribute grammar

As a result of a phrase generation on the grammatical network there is a possibility not only to

receive a phrase, but also of its deduction in the bracket form. E. g. for the phrase

draw red rectangle
we receive the deduction:

<main draw <color red {α2} color> <object rectangle {α4} object> {α1} main>.

Interpretation of the bracket syntax of the deduction process leads to the code generation in

INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Наукові праці ВНТУ, 2009, № 4 5

the Intermediate Translation Language – ITL. For the phrase considered we receive ITL code that at
the high detailization level is equivalent to the following:
Entry point()
{
 Declare translation;
 Main(translation);
}
Main(script)
{
 Declare my_color, my_object;
 Color(my_color);
 Object(my_object);
 script = “Draw (” + my_object + “,” + my_color “);”
}
Color(color)
{
 color = “red”;
}
Object(object)
{
oject = “rectangle”;
}

Interpetation of ITL code obtained in the grammatical network gives the following variant of
translation: Draw (rectangle, red);.

Conclusions

Thus, the discussed method of recording CF grammars enables not only grammar
representation in the form of oriented weighted graph but also parallel deduction of grammar
phrases without additional grammatical control of grammatical uncertainty. Another example of
this approach is the possibility to obtain the interpreted code at the stage of input command
deduction using main principles of structural programming.

REFERENCES
1. Encyclopaedia of Artificial Intelligence. Entry Natural Language Understanding. – P. 660 – 677. – Режим

доступу: http://sabia.tic.udc.es/encyclopediaAI/.
2. Льюис Ф. Теоретические основы проектирования компиляторов / Льюис Ф., Розенкранц Д., Стирнз Р. –

М.: Мир, 1979. – 654 с.
3. Грищук Т. В. Розпізнавання природної мови на граматичних марковських мережах / Т.В. Грищук //

Наукові праці Донецького національного технічного університету. Серія: “Обчислювальна техніка та
автоматика”. – Донецьк: ДонНТУ, 2005. – С. 181 – 187.

 Grihschuk Tatiana– Cand. Sc. (Eng.), Ass. Prof. of the Department of Computer Control
Systems.

Byckov Mykola– Cand. Sc. (Eng.), Prof. of the Department of Computer Control Systems.
Vinnytsia National Technical University

