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Introduction 

In the course of continuous measurement of vibration process in an object the following physical 
quantities are determined: vibration shift (vibration amplitude), vibration speed (the rate of the 
coordinate change), vibration acceleration (the rate of vibration speed change), and the rate of 
vibration acceleration change [1, 2].  

At present the methods with full delimitation of monitoring and diagnostics functions are mostly 
used. Monitoring involves usage of a vibration sensor, installed stationary, and a measuring channel 
for electrical quantities with microprocessor control. Monitoring provides detection of changes in 
vibroacoustic state of the object, selection of the changes connected with the possible change of its 
condition and prediction of the potential development of defects. The monitoring task is solved 
using hard- and software tools, the task of diagnostics – by software tools that realize one of the 
known information technologies. 

There exist the following information technologies of vibration diagnostics: 
− power technology based on the measurement of the controlled signal amplitude; 
− frequency  technology that analyzes frequency-amplitude spectrum of the signal; 
− phase-time technology based on the comparison of signal forms measured at fixed time 
intervals. 
This paper considers the distinguishing features of frequency technology application for monitoring and 

vibration diagnostics of machines and equipment. 

Phase-time technology for the analysis of non-stationary signals  

In the overwhelming majority of existing vibration diagnostics methods the controlled signal of 
rotary machine vibration is assumed to be a stationary one, i.e. its amplitude frequency spectrum 
does not change in time [2]. 

At the same time, if a signal is being measured for a long time (is being monitored), local 
deformation might occur in the machine assembly (caused by wear of some of its parts or for 
another reason), which, in turn, leads to the changes in amplitude-frequency spectrum of the 
vibration signal. Therefore, it would be expedient to assume that in general case the controlled 
vibration signal of a certain machine unit is non-stationary, i.e. its amplitude-frequency spectrum 
changes in time. 

Diagram of the amplitude-frequency spectrum of non-stationary signal will not be two-
dimensional, but a three-dimensional one. The example of such amplitude-frequency spectrum 
diagram is presented in fig. 1. 

If vibration signal is considered to be stationary, its amplitude-frequency spectra can be 
determined using ordinary Fourier transformation, which is usually done in diagnostics systems. It 
should be reminded that Fourier ( )ωf  spectrum of one-dimensional signal ( )tf  is given by the 
formula 
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  ( ) ( )∫
∞

∞−

−= dtetff tiωω   (1) 

and does not allow to localize possible frequency changes in time. 

 
Fig. 1. Three-dimensional diagram of the discrete amplitude-frequency spectrum (along horizontal axes frequency and 

time while along the vertical axis - amplitude is plotted) 

It is evident that if we want to combine monitoring and diagnostics functions in one system, it 
is necessary to apply such transformation that would provide continuous determination of the 
amplitude-frequency signal in time.  

One of such transformations is the so called windowed Fourier transform (WFT).that is 
sometimes called weighted Fourier transform (WFT). ( )tf  signal is analyzed only in the limits of a 
certain window. For this ( )tf  is multiplied by a function with the compact carrier,                   
e. g., ( ) ( ) ( )tttttg −−= 21 θθ , where θ  – ordinary step function that is non-zero only for positive 
values of the argument, 1t , 2t  – moments of the signal start and finish that are set by the window 
choice.  

In this case 

 ( ) ( ) ( )∫
∞

∞−

−= dtetgtfn,mf tiω  (2) 

or in a discretized  form  

 ( ) ( ) ( )∫ −−= dtenttgtfn,mf tim 0
0

ω ,  (3) 

where 000 >t,ω  are fixed and n,m  – numbers that define scale and location. 
Function ( )tg  may have another form, the main thing being its having a compact carrier  

[3, 4]. 
By means of WFT the signal is localized in time, but the window must be of a fixed size, which 

is main disadvantage of this transformation. It should be noted that time-frequency transformations 
are subjected to the universally known Heisenberg uncertainty principle that in our case is 
formulated as follows: there does not exist a fixed time moment for which it is possible to determine 
spectrum components of the signal.  

Proceeding from this principle we can determine only time intervals when the signal contains 
frequency bands.  

From this it follows that if a window (i.e. time interval) is small and this points to the high time 
localization of the spectrum, the frequency band will be rather indistinct (smeared) and, vice versa, 
more accurate determination of spectrum components requires a big window [3, 4].  

Real non-stationary signals consist of short-time high-frequency and long low-frequency 
components and so for the analysis it is expedient to use transformations that would provide 
different windows for different frequencies (narrow ones for high and wide ones for low 
frequencies).  

Wavelet transformations meet these requirements.  
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At the verbal level it can be represented as displacement of a certain analytical function (the so 
called parent wavelet) along time axis and its interaction with the signal that is being controlled. 
Different functions can be used as parent wavelets, such as the wavelets of Haar, Shannon, 
Daubechies, Meyer, the “Mexican hat” wavelet etc. 

If parent wavelet is designated ( )tψ , then wavelet transformation of signal ( )tf  with scale 
parameter s  and time shift τ  is defined as 

 ( ) ( ) dt
s

ttf
s

s,Wf ⎟
⎠
⎞

⎜
⎝
⎛ −

= ∫
+∞

∞−

∗ τψτ 1 , (4) 

where ∗ψ  is a conjugate parent wavelet [3 – 5]. 
If signal ( )tf  is given in analytical form, formula (4) reflects continuous wavelet transformation 

(CWT) of signal ( )tf . 
It is evident that the domain of function ( )s,Wf τ  is the set of all possible combinations of s  and 

τ . 
Scale parameter s  is, in fact, the value reverse to frequency. As it is in the denominator, then  
1<s  compresses it. 

CWT calculation algorithm is rather simple.  First, a researcher chooses a parent wavelet and 
then ( )s,Wf τ  is calculated for all points of the domain.  

In this way a matrix of wavelet coefficients values for all combinations of s ,τ  is obtained. 
Let’s consider some examples. Let a signal (fig. 2) with a continuously diminishing value is 

given analytically as  

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

10
250 tsin.tf π . (5) 

 
Fig. 2. Diagram of the signal with diminishing frequency 

 
Let’s perform  wavelet transformation for this signal. As a parent wavelet, function 

 ( ) ( ) 22

2

1
t

ett
−

−=ψ  (6) 

is chosen. It is called the “Mexican hat” (fig.3) and often used for wavelet transformations. 
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Fig. 3. Diagram of the “Mexican hat” parent wavelet  

Let’s determine a matrix of wavelet coefficients for this signal.  
It is obvious that the range of this matrix must be finite as scale parameter s  and time shiftτ  are 

given with a definite step. 
Calculations in this example and in the subsequent ones are performed in MathCAD 

environment. The listing is given below. 

MHAT t( ) 2t
exp

t2−

2

⎛
⎜
⎝

⎞
⎟
⎠

d

d

2
:= Ψ a b, t,( ) MHAT

t b−

a
⎛⎜
⎝

⎞⎟
⎠

:=

W a b,( )

25−

25

tΨ a b, t,( )
1

a
⋅ f t( )⋅

⌠
⎮
⎮
⌡

d:=

i 0 10..:= b 0 25..:= ai
i 15+( )2

102
:=

Ni b, W ai( ) 2 b⋅ 25−,⎡⎣ ⎤⎦:=
 

Three-dimensional diagram of wavelet coefficients N  is shown in fig. 4. 

 
Fig. 4. Diagram of the continuous wavelet transformation of a signal with diminishing frequency 

The diagrams of wavelet transformations have the following distinguishing feature: the time and 
scale parameter are plotted on the horizontal axes (instead of frequency). 

And now we will consider the signal (fig.5) with continuously increasing frequency given in the 
form of 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

50
2 51.tsintf π . (7) 
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Fig. 5. Diagram of a signal with increasing frequency 

Using the same parent wavelet and the same algorithm, we conduct CWT and build the diagram 
(fig. 6). 

 
Fig. 6. Diagram of the continuous wavelet transformation of a signal with increasing frequency   

Unfortunately, real signals (vibration signals in particular) cannot be represented in analytical 
form. They come from sensors in the form of sequences of numbers at definite time intervals and 
are discrete by their nature. In such cases discrete wavelet transformations (DWT) by means of 
numerical algorithms are used [3 – 6]. 

In this paper such algorithms will not be discussed in detail. It should be only noted that the 
vector of controlled signal and the vector of coefficients corresponding to the definite parent 
wavelet are used as input signals for them. 

Let’s consider the example of a certain discrete signal (fig. 7). Using DWT we determine its 
matrix of wavelet coefficients.  
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Fig. 7.  Diagram of a random signal 

Computations are performed in MathCAD environment using built-in function “Wave”, that 
realizes one of the numerical DWT algorithms based on Daubechies parent wavelet. 

W wave F( ):= k 1 6..:=

coeffs level( ) submatrix W 2level
, 2level 1+ 1−, 0, 0,( ):=

Ci k, coeffs k( )
floor

i

128

2 k
⎛
⎜
⎝

⎞
⎟
⎠

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

:=

 
Diagram of the matrix of C  coefficients is shown in fig. 8. 

 
Fig. 8. Diagram of the discrete wavelet transformation of a random signal 

From fig. 7 it is evident that we cannot find precise spectrum characteristics of the signal at each 
moment of time, which is the result of Heisenberg uncertainty principle action. At the same time we 
know frequency bands in definite time intervals. 

Conclusions 

1. For the analysis of non-stationary vibration signals it is expedient to use 
mathematical tools of wavelet transformations;  

2. Depending on possible spectrum composition of the vibration signal, the choice of a 
parent wavelet and numerical algorithm, while using DWT, requires a very responsible attitude. 
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