
INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Наукові праці ВНТУ, 2009, № 3 1

V. V. Voytko, Sc. (Eng.), Assist. Prof.; A. V. Denisyuk; G. L. Lutsyshin

UNIVERSAL GRAPHIC COMPONENT EDITOR GAMING CARDS

The paper suggests the developed version of graphical editor game cards, realized by architectural
principle of objects management applying component technology to enhance its functionality in open-type
systems. The editor is characterized by independence on the subjects and genres of games and game-specific
frameworks, hence providing the possibility of its universal use not only in the field of game technologies,
but also as a tool for modeling systems of objects in design and engineering projects.

Keywords: game framework, automation of games design, game essence, component architecture,
universal characteristics, structure of graphic games.

Introduction

Today, in time of rapid development of computer-based technologies, multimedia products
aimed at achieving the research, scientific, educational, promotional, entertainment and commercial
purposes, are widely used. The development of modern computer games is preceded by the creation
of game cards editor, which requires additional time within forecast period of the end product
development [1]. Game cards designed by manufactures are implemented as separate files, formats
of which are not standardized and are not disclosed. Editor of game cards may be included in the
basic game delivery to provide the possibility of creation and usage of their own cards within a
separate multimedia product in order to implement the authors ideas in graphical environment (such
opportunity is provided in games Termins, Lode Runner, Serious Sam, etc.).

However, modern editors of game cards are characterized by highly specialized features, limited
and strictly defined functional possibilities and orientation on specific software to create computer
applications, which limits future use of existing graphical editors even for writing new versions of
multimedia products. Using existing editors of game cards by other developers in general is
considered to be impossible because of the orientation of the editors at different game frames.
Therefore, development of graphical editors of game cards, with special characteristics of universal
nature, which enables their usage in creation of computer games is very actual problem.

Hence, the aim of research is automation of game cards creation by means of universal graphic
editor. Object of study - methods of graphic editors creation. Subject of research are principles of
game cards creation and methods of realization of graphic effects in computer games. The main
tasks of the research we consider the development of graphic editor of game cards and provision of
its universal methods of graphical editors construction

Analysis of modern graphics editors of game cards
Let us consider the possibilities and limitations of some existing editors. Game Termins is – two-

dimensional graphic real-time strategy, delivered with built-in card editor. It enables to edit and
create cards which will be used in the game. The editor includes a standard set of game objects,
oriented at provision of game story. The set is not subject to any modifications and is finite. In
addition, there exist certain rules regarding the placement of objects on the card. Thus, the editor is
highly specialized in nature, has a hidden format of cards, does not contain the facilities of
modifications or addition to the library, all this makes it impossible to be used by other developers
in the process of creating new games.

Now let us consider a more powerful editor that is delivered with the game Heroes 3. The editor
allows to build-in the game card with pre-defined sets of objects – a set of roads, barriers, trees,
grass, etc. The objects in each set have fixed properties and clearly defined designation. Creation of
your own objects is not provided. The editor supports only a few fixed sizes of cards. File format of
the card is hidden. Therefore, the application of the editor to create your own games is also

INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Наукові праці ВНТУ, 2009, № 3 2

impossible.
You should pay attention to the fact that today there appeared systems of automated game

design. They include Microsoft XNA Game Studio designed to develop games for consoles Xbox
and OS Windows. The system has developed levels editor. Unique in its kind is system SkyStudio
manufactured by Skyfallen Entertainment, which is a versatile integrated game development
environment, independent on the platform and game carcass; generates programming code and has
a wide range of possibilities. However, such modern environments has not yet gained popularity
and spread, and vast majority of games are written traditionally, using independently developed
levels editor. Automated systems have their own scripting languages, techniques of physical
phenomena programming, logic and graphics, but have certain limitations on the expansion and
improvement of standard objects libraries. Thus, consider the development of the graphic editor
game cards, the model which will be open to be actual, it will provide the possibility of expansion
of objects set by own COM components and ensure the universality of the editor characteristics.

Problem set-up

 The notion of universality of the developed editor implies: enlargement of functional
possibilities, independence on genres and themes of games; the ability to adapt for specific
situations, independence on the game carcasses. Privacy of input file format of the card is realized
in order to protect copyrights, but the editor should be provided with means of reading the card file.

Support of functionality of the editor extension is that the editor is a set of COM components [2],
which interact with each other through documented interfaces. Thus, any component can be easily
replaced by another, more modernized, or specialized. In addition, the possibility to add new
components created by game developers, to configure the editor to fit your needs is provided. The
added components are enlisted in the library for reuse. Therefore, the developed editor must have
full component architecture.

All modern games have common structure [3]. Game it is a set of objects that interact with each
other. Each object has a certain set of properties and logic of behavior. Independence of developed
editor on genres and themes of games is in the ability to create new game objects, set them certain
properties and logic of behavior and use in the process of game cards composition (even the object
"grass" on the card may have characteristics: color, danger, not to mention more complex objects)
[3].

Ability to customize the editor for the description of situations with subsequent transformation of
universal features in specialized ones in our opinion, is main characteristic of the developed editor.
On one hand, the editor provides the possibility to create different game objects, but it is allowed
only at the stage of game model development. End version of the editor should be delivered in a
specialized form to ensure the correctness of play operation mode. This problem can be solved in
two ways: by providing the possibility of components replacement (this approach envisages the
creation of two copies of the components: universal - for game development stage and specialized -
for the end product), which, in its turn, requires redundant system resources; the creation of
components, which via configuration files, can be configured for different modes of operation, and
the game developer is free to define the syntax of these configuration files.

Today, there exist many game frameworks, different by principles of operation and use, as well
as their specialized capabilities [4]. Graphic effects, supported by a single framework can not be
supported by other frameworks, or look differently. If the graphic editor works on certain game
framework, the same framework will limit it. If the developer uses different framework of the game,
then he will have to create graphic effects on two different frameworks: for the editor and the game
itself. It was therefore decided that the editor should not be oriented by default on specific
framework. The developer creates the editor component of framework initialization by means of its
own framework. Moreover, this component will become common not only for a particular
developer, but for all the developers who use this game framework. Thus, it can be stated that the

INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Наукові праці ВНТУ, 2009, № 3 3

developed editor will be an over structure on a certain game framework. It should be noted that the
game frameworks are higher-level game development tools, that is why the creation of the
initialization component is not a difficult task.

The format of the input file of the card should be hidden. This will allow the designers to create
game cards for existing games without copyright infringement. In the editor, two mandatory system
component are provided, one of which keeps the card in the file, and another reads out the
information. Of course, like any other component of the editor, these components can be further
improved or replaced. Reading component of editor card file will be used directly in the game.
Similarly, it is also possible to use any other components of the editor. Thus, the developer of the
game only once, must implement necessary graphic and other features of the card by means of its
framework, software support for their use is provided by automation facilities of graphics editor.

Development of the editor structure
The basic component of the graphic editor is the register of other components UCWERegistrar.

This component contains a dynamic list of components, which at the time of the editor operation are
in the active mode. This provides the principle: "every component can be registered in the list and
communicate with each active component of the library”. Due to this principle the possibility of the
editor can be expanded in any direction. Interfaces of UCWERegistrar component are given in
Table. 1.

Table 1

 Interfaces of UCWERegistrar component
Name of interface Name of the function Functions designation

ICUWERegistrar

Registering

Called by a component for its registration in
the list of components

UnRegistering

Called by a component to remove from the list
of registered components

 GetComponent

Registered component always contains a
reference to the interface ICUWERegistrar.
Through this function it may request the
IUnknown interface of any other registered
component.

 GetComponentsList

Returns a list of all active components of the
editor

 Main component of the editor is component UCWEEditor, which creates a window of the main

menu of the program and is responsible for loading of other components, listed in the configuration
file. One of the interfaces of this component is the interface IUCWEComponent. This is the main
interface, which should be implemented by all components, to be supported by the editor. Interface
IUCWEComponent contains basic functions of component management.

Another supported interface is IUCWEMenu. Its presence indicates the support by the
component of the main menu, and other components can add in the menu own options, using the
interface IUCWEMenuItem. Interface IUCEMenu keeps a list of interfaces IUCWEMenuItem of
editor components and provides calls of their functions in accordance with the selected menu item.
The list of interfaces supported by component UCWEEditor is shown in Table. 2.

INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Наукові праці ВНТУ, 2009, № 3 4

Тable 2
Name of the

interface
Name of the

function
Functions designation

IUCWEComponent
(function of this
component is
similar for each
component of the
editor)

Registering

Any component – loader must call this function of loaded
component to load the component can register calling
ICUWERegistrar.Registering

Init

After call of Registering component loader must call this
function of loaded component, so the latter could be initialized

Do

Function is called by components loaders so that
components loaded by them components could perform
their functions

UnInit
 Deinitialization function. Called by the component loader.

UnRegistering

Function of deregistration. Called by the component loader so
that the loaded component could release previously occupied
component UCWERegistrar.

GetData

Function is called by the component for saving the updated
data of the card on the disk

SetData

The function is called when the loader of the card read the data
of the corresponding component and passes the latter card data
saved by on the disk by means of the function GetData

IUCWEMenu

AddItem

Any component having the interface pointer IUCWEMenu of
other component, can add into menu, its own options, passing
in the function AddItem implemented interface
IUCWEMenuItem

DeleteItem

Component, which added an option in the menu of another
component, may remove its option, by calling this function

Component UCWEMap adds options of opening and creation of the card in the menu of component

UCWEEditor, implements these options and can download other components. UCWEMap at the beginning
of its work load three components: UCWEEngine, UCWESaver and UCWEOpener. UCWEEngine – is
component of game framework initialization and processing of data entry, the possibilities of which the user
will apply in the editor in the process of cards creation. UCWESaver saves the game card in a file on disk,
and UCWEOpener is responsible for the correct download. UCWEOpener is used directly in the game to
load cards. UCWEMap supports the interface IUCWEComponent, as a component UCWEEditor, and has
similar designation of interface functions.

When choosing in the menu component UCWEEditor the options of creation or opening of the card
UCWEMap loads components UCWEObjectsManager and UCWELayersManager. UCWEObjectsManager
is intended for creation, storage and removal of game objects. The component also saves a list of game
objects issues that the user can select and place on the card field. Fig. 1 illustrates possibilities of dialog
window of component UCWEObjectsManager.

.

INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Наукові праці ВНТУ, 2009, № 3 5

Fig. 1. Dialog window of UCWEObjectsManager component

All the objects in the list are divided into groups. The group does not contain the final information

and is not a component, and serves for convenient visual ordering of objects in the list. Interfaces, which
support component UCWEObjectsManager, are given in Table. 3.

Тable 3

 Interfaces of the component UCWEObjectsManager
Name of the interface Name of the function Function designation

IUCWEComponent Interface functions are described in Table. 2

IUCWEObjectsManager

CopyCurrentObject

Returns a copy of the selected object in
the list of object issues

GetCurrentObject

Returns a reference to the selected
object in the list of object issues

GetObjectsList

Returns a list of object issues

Each object will be initialized in the editor by component UCWEObject, ie UCWEObjectsManager saves the
list of components UCWEObject. User in the process of game card creation selects needed object and places
it in the card. The structure of the card consists of layers. At certain moment of time there is only one active
layer, that is why any added object will belong to one particular layer. Layers provide a means of grouping
objects added to the card to arrange a convenient scheme management. Layer in the editor is presented by
component UCWELayer. Component UCWELayersManager is responsible for layers editing, which saves
the list of all created layers. Dialog window of component UCWELayersManager is shown in Fig. 2.

Fig. 2. Dialog component UCWELayersManager
Interfaces, which support component UCWELayersManager, are shown in Table. 4yu

INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Наукові праці ВНТУ, 2009, № 3 6

Table 4

Interfaces of UCWELayersManager component

Name of interface Name of function Function designation

IUCWEComponent Interface Options are described in Table. 2
IUCWELayersManager

GetCurrentLayer

Returns a pointer to the interface of
IUCWELayer component, which
initializes the current working layer

Component UCWELayersManager manages the list of components of UCWELayer. Component

UCWELayer will initialize a specific layer of the card. It contains a list of components UCWEObject -
copies of objects from the list in UCWEObjectsManager, added to the card. User action is intercepted on the
card by the component UCWEEngine, which addresses to the corresponding function of UCWELayer, and
it, in its turn, adds to its list new object which is passed to it as an argument.

When the user presses Delete, the component UCWEEngine calles the required function of
component UCWELayer, which removes from the active list the specific (selected) object. Similar actions
are taking place all over the card objects. Component UCWEEngine monitors the introduction of user data
and calling functions of corresponding components, operates the objects on the card. The list of interfaces of
UCWELayer component is shown in Table. 5.

Table 5
The list of interfaces of UCWELayer component

Name of the interface Name of the function
 Function designation

IUCWEComponent Functions of the interface are described in Table. 2
IUCWELayer

AddObject Add new object to the layer
DeleteObject Remove the object from the list
SetCurrentObject Make the current object on the map
GetCurrentObject

Return a pointer to the selected object

Component UCWEObject is a game object of the card. Every object is - an entity that accumulates

certain properties. The property will be initialized in the editor by the components UCWEProperty. Thus
UCWEObject component contains a set of components UCWEProperty. Components UCWEProperty is
created by user of the editor in accordance with the plot developed by means of the framework of the game.
Initialized components are automatically used in the game. Interfaces of the component UCWEObject are
shown in the Table. 6.

Table 6

 The list of interfaces of UCWEObject component
Name of the interface Name of the function Designation of the function
IUCWEComponent Interface functions are described in Table. 2

IUCWEObject

GetPropertiesList

Returns the list of components
UCWEProperty as object properties

For each game UCWEProperty components can be own. One of the components UCWEProperty

can implement the appearance of the object, the other - the numeric value of the parameter, etc. The
component must support a standard interface of IUCWEComponent. It should be noted that each of
the components of the editor can support other proprietary interfaces. Especially, this principle
regards the components UCWEProperty in the process of implementation of close interaction with

INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Наукові праці ВНТУ, 2009, № 3 7

the component UCWEEngine, because they are created by means of one game framework. General
model of graphical by-component editor is shown in Fig. 3.

Fig. 3. General model of graphic component editor

Note that under the insertion of one component into another we mean that the first component

creates (loads) the last one. Thus, the lifetime of the loaded component is embedded in the lifetime
of the component-loader. Components interact with each other by COM technology, realizing the
architectural principle of objects management. So, the start before execution of the final file
provides loading of UCWERegistrar and UCWEEditor components. UCWEEditor loads directly
UCWEMap component and other components, which are listed in the configuration file of
component UCWEEditor. UCWEMap, in its turn, loads the corresponding components
UCWESaver, UCWEOpener, UCWEEngine. Working file UCWE.exe calls function
IUCWEComponent:: Registering component UCWEEditor, which, in turn, calls the same functions
in all of its loaded components, encouraging them to take similar actions to the lowest level of
embeddiment. Similarly file UZWE.exe invokes IUCWEComponent:: Init. Component
UCWEEngine, creating by its own means the window of rendering calls the function
IUCWEComponent:: Do component UCWEEditor. The latter provides the call of the same
functions in all active components, moving successively to the last level of embediment. If the user
selects a menu option of card creation, then UCWEMap additionally loads components
UCWEObjectsManager and UCWELayersManager, and cyclic function calls Do are repeated
again: When control reaches the function Do of UCWEProrerty components, then, depending on
designation, one of them will draw the object, another shades it or graphically realizes certain
effect. Thus step by step the creation of objects that form the card is carried out. When the user
closes the editor, function UnInit is called and then functions UnRegistering of all components of
the editor in the sequence reverse to loading are called. If the user selects the option to save the file,
the component UCWEMap calls the function of component UCWESaver saving, providing a chain
call of GetData function of all embedded components of the editor and the file saves all data to be
provided by these functions. The algorithm of file card opening with the call of component
UCWEOpener operates by the same scheme.

Components of the editor can create workflows, so all components should be established taking

INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

Наукові праці ВНТУ, 2009, № 3 8

into account the multi-thread nature. The model the free flow of COM (Free threaded model) is
standard for the developed editor.

Using the chain implementation scheme of the architectural principle of objects management
ensures reliable operation of the graphic editor and allows to avoid conflicts while data processing.

Conclusion

 Universal graphic component editor of game cards, which generalized the capabilities of
existing editors, thus providing independence on subjects and genres of games is developed. The
problem of independence of the editor independence on specific game carcasses is solved. Due to
application of component technology, the editor provides the extension of its functions in the
system of open type. Available facilities of card file allow the designers to realize the author's ideas.
The editor can be used for modeling of objects systems in various spheres of design and
engineering.

REFERENCES
1. Todd Barron. Strategy game programming with DirectX 9.0. – Wordware Publishing Inc.: 2003. – 350 с.
2. Дональд Бокс. Сущность технологии СОМ. Библиотека программиста. – СПб.: Питер, 2001. – 400 с.
3. Ламот Андре. Программирование игр для Windows. Советы профессионала, 2-е изд.: Пер. с англ. –

М.: Издательский дом "Вильямс", 2004. – 880 с.: ил. – Парал. тит. англ.
4. Марк Зальцман. Компьютерные игры: как это делается.: Издательский Дом “Логрус”, 2000. – 540 с.

Voitko Victorija – Cand.Sc.(Eng), Assist. Professor, Software Department.

Denysiuk Alla – Assistant.

Lutsyshyn Gennadiy – Graduate Student, Department of Information Technologies and Computer
Engineering.

Vinnytsia National Technical University.

