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Expert system with neural network mechanism of inference is suggested. Procedure has been developed 
for predicting the state of the object diagnosed by such mechanism. 
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Introduction  

Modern information technologies for object state diagnostics make use of the specific systems of 
artificial intellect – expert systems (ES). Such systems are organized so that the results of 
measuring      a set of object controlled parameters n21 xxx ,...,,  can be used for its state diagnostics. 
Operation principles and structure of the diagnostic expert system depend, to a great extent, on the 
type of the inference mechanism (IM). In practice two essentially different approaches to IM 
construction are used: productional and Bayesian. Productional approach, that has found wider 
application, is based on the system of the so called productional rules constructed in the following 
way [1]: 
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Production systems are convenient for practical application and simple in realization. However, 
they have an essential disadvantage: they are constructed so that that there exists a dependence of 
the diagnostic system efficiency on the dimensionality of the controlled parameter. Diagnostic 
system must be complete, i. e. for each possible variant of the controlled parameters set a 
corresponding productional rule must exist. This means: if each parameter can adopt one of m  
possible values, then the total number of productional rules will be nmN =  and will increase with 
the growth of m  and n . 
 
Bayesian inference mechanism [2] practically excludes the dimensionality problem. However, 
practical capabilities of such systems are limited due to the necessity of statistical independence of 
the controlled parameters. The efforts to avoid this problem were made in [3]. Here the dependent 
parameters are joined in groups. Then, parameters, included in one group, are processed using 
productional rules. The obtained results are already practically independent and used in Bayesian 
technology. Such ES with combined IM makes it possible to solve diagnostics problems for high 
dimensionality of the controlled parameters set and their possible correlation.  At the same time it 
has common principle disadvantage of all ES – discrete character of the controlled parameters. Both 
in productional and in Bayesian systems each parameter is either a symptom with Boolean character 
or manifestation, or if it is a continuous parameter, its possible values range must be divided into 
subranges, i.e. discretized. This factor causes a number of problems in practical development of ES. 
First, if a number of subranges is large, the choice of a rational number of subranges must result 
from the non-trivial compromise between IM complexity and state evaluation accuracy. Second, the 
boundaries of subranges are difficult for theoretical explanation. The very existence of boundaries 
can alone lead to the unnatural situation when different diagnoses correspond to two parameter sets 
that are similar as to their numerical values.  
All these problems can be excluded if IM is constructionally adapted to processing of the 
parameters that are discrete by their nature. Such IM can be implemented with the application of  
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artificial neural networks (ANN). Let’s formulate the problem of the development of ES system 
with neural network inference mechanism designed for the evaluation and prediction of the 
diagnosed object state. 

Problem statement 

As it is known, any ANN performs mapping of the points from multidimensional observation space 
X  with n  dimensionality onto the points of the multidimensional solution space Y  that in general 
case has another dimensionality H . Here, correct mapping of the points from X  onto Y  is provided 
by a specially arranged procedure of the network training. Assume that a series of measurements of 
the object controlled parameters is performed. As a result, sets ( )n1j112111 xxxxX ,...,,...,,= , 

( )n2j222212 xxxxX ,...,,...,,= ,…, ( )lnlj2l1ll xxxxX ,...,,...,,= ,…, ( )LnLj2L1LL xxxxX ,...,,...,,=  are 
obtained.  In the course of network training these sets are presented to Q  experts that for each 

L21lXl ,...,,, =  set assign distribution of 
probabilities ( ) L21lppppP lqHlqh2lq1lqlq ,...,,,,...,,...,, == , Q21q ,...,,=  of H21h ,...,,= of object 
states. Elementary statistical processing of the expert evaluation results matches each measurement 
set lX  with the distribution of average values of state (range) probabilities lP̂  and a set of 

probability dispersions 2
lσ̂ .  The obtained data are used for ANN training. After this, for each new 

vector of controlled parameter measurements neural network forms corresponding vectors )(XP  
and )(X2σ . The question about the possibility of ANN application for object state prediction 
remains to be a problematic one. Let’s consider two alternative procedures of this problem solution. 

Main results 

A. Microapproach. As trained ANN for each observation vector of controlled parameters 
determines corresponding distribution of diagnoses probabilities, the solution of the object state 
prediction problem can be obtained by the observation vector prediction.  
Sets n21 XXX ,...,,  are used for the observation matrix formation:  
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The columns of this matrix correspond to the readings of each controlled parameter for the time 
points L21 ttt ,...,, . Let’s introduce the model of parameters evolution in time: 
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Calculation of ( )ijc  parameters of the model (1) is performed by the least-squares method using 
matrix 
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and vectors 



INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING 

Наукові праці ВНТУ, 2009, № 2 3 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1d

11

01

1

c

c
c

c
K

, 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

2d

12

02

2

c

c
c

c
K

,…, 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

dn

n1

n0

n

c

c
c

c
K

, 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1L

21

11

1

c

x
x

X
K

)( , 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

2L

22

12

2

c

x
x

X
K

)( , …, 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

Ln

n2

n1

n

c

x
x

X
K

)( . 

Now the set of vectors of regression equations parameter estimates is found by minimization of 
functionals: 
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Optimal (in terms of least-squares method) vectors of regression coefficients are found by the 
formulas: 

 ( ) )(ˆ jT1T
j XHHHc

−
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Substitution of (2) into (1) gives a set of analytical descriptions of controlled parameters in time, 
which provides the possibility to calculate their values at npt  moment of the prediction: 
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Trained ANN will match the obtained set of parameter values  
( ))(),...,(),()( npnnp2np1np txtxtxtX =  

with the distribution of the object state probabilities at the moment of prediction.  
B. Macroapproach. By means of entering observation sets n21 xxx ,...,, sequentially to ANN input, 
the corresponding distributions of diagnoses probabilities will be obtained: 

( )H1121111 ppptP ,...,,)( = , 

 ( )H2222122 ppptP ,...,,)( = , (3) 
………………………….. 

( )LH2L1LLL ppptP ,...,,)( = . 
The law of probability variations for each range, e. g. for h -range, H21h ,...,,= , is described by the 
corresponding time function )(tPh , that can be represented by expansion into series in terms of a 
certain set of basic functions in accordance with the model:  

 H21htatP
m
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where )t(),...,t(),t( m10 ϕϕϕ is a set of basic functions. 
It should be noted that standard independent evaluation of the parameters of the model (4) for each 
diagnosis separately is impossible as in this case normalization condition will not be taken into 
account: the sum of diagnoses probabilities at any time point must be equal to one. 
In this connection let’s consider another approach.  
Simple technology for the application of the set of probability distributions (3), corresponding to 
the observation moments L21 ttt ,...,, , for the calculation of distributions at the prediction moment 
consists in the following. 
We approximate each of the distributions (3) of the continuous curve (3) representing the density of 
diagnosis probabilities distribution and depending on q  parameters.  Now for each of the 
sets ( ))(),...,(),( L12111 ttt θθθ , ( ))(),...,(),( L22212 ttt θθθ ,…, ( ))(),...,(),( Lq2q1q ttt θθθ  we build analytical 
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continuation and calculate the parameter set )(),...,(),( npqnp2np1 ttt θθθ , that defines unambiguously 
the desired distribution of the diagnosis probabilities at npt  moment of  prediction. Unfortunately, 
this elementary procedure can turn out to be extremely labor-consuming because the character of 
each distribution (3) could be so complicated that would require an unacceptably large number of 
q parameters for its adequate approximation or otherwise would be inadmissibly rough.  
The alternative is to use for the description of distributions (3) the laws of empirical distribution, 
their principal feature being monotonous non-decreasing. For the evaluation of empiric distribution 
laws the functional can be used 

 ( ),)()( tyth
2
1

2
1tg +=  (5) 

where )(ty  provides the empirical law )(tg adaptation to real data. In [4] it is shown that quite 
acceptable (in terms of quality) approximation of real empirical distribution laws can be provided 
by the description of )(ty  in the form of quadratic polynomial. General prediction scheme will be 
as follows. A distribution set )(),...,(),( LL2211 tPtPtP  is transformed into the empiric integral laws: 

( )1RRR 12111 ,...,,= , ( )1RRR 22212 ,...,,= ,…, ( )1RRR 2L1LL ,...,,= , 
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Then each of the obtained integral laws is approximated independently using functional (5), 
presented in the form of 
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Approximation quality index has the form of 
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Minimization (7) is performed by least-squares method. As a result, a number of sets  
{ }),,(),...,,,(),,,( L2L1L0221202211101 aaaaaaaaa  are obtained. These sets are used for receiving 
polynomial functions )(),(),( tatata 210  that provide the possibility to describe approximation (6) for 
any time point. 
Let’s consider this procedure in detail. For the description of functions )(),(),( tatata 210 we use the 
system of functions )(),...,(),( ldl2l1 ttt ψψψ , orthogonal on the set of equidistant points L21 ttt ,...,,  
so, that 
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We describe )t(a),t(a),t(a 210  in the following way: 
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Using the results of approximation (6) – (7), we introduce values sets of these functions on the set 
of arguments :,...,, 21 Lttt  
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Now we introduce matrix 
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Vectors 210 B,B,B  to be found are estimated by minimization of functionals: 
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By substitution of (10) into (9), the values of l2l1l0 aaa ,,  for any t  are calculated. Now, using (6), 
we calculate the empirical law of the diagnoses probability distribution for  npt  moment of the 
prediction. 
Thus, we have solved the problem of prediction of the system state probability vector.  

Conclusions 

In this paper method is suggested for using ES with neural network inference mechanism for 
predicting the state of the object being diagnosed. Two alternative approaches to the solution of this 
problem are considered. One of them is based on the prediction of the controlled parameters 
behavior. The other implements the suggested procedure of the direct prediction of failure state 
probabilities distribution.  

REFERENCES 
1. Уотермен Д. Руководство по экспертным системам: Пер. с англ. – М.: МИР, 1989. – 388 с. 
2. Нейлор К. Как построить свою экспертную систему: Пер с англ. – М.: Энергоиздат, 1991. – 286 с. 
3. Миненкова З. Е. Комбинированный механизм логического вывода байесовой диагностической 

экспертной системы // Вестник ХПИ. – 2003. – № 6. – С. 69-74. 
4. Серая О. В. Модели и информационные технологии оценки и прогнозирования состояния многомерных 

динамических объектов в условиях нечетких входных данных: Дис. канд. техн. наук: 05.13.06. – Х., 2001. – 
251с. 

Seraya Oksana – Cand. Sc. (Eng), Ass. Prof., the department of economic cybernetics and marketing 
management. Phone: (8057)-707-66-28. 



INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING 

Наукові праці ВНТУ, 2009, № 2 6 

National Technical University “Kharkiv Polytechnic Institute”. 

Katkova Tatyana – Cand. Sc. (Pedagogic), Ass. Prof., head of the department of mathematics and 
mathematical methods. Phone: (06153)-71971. 

Berdiansk University of Management and Business. 


