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Expert system with neural network mechanism of inference is suggested. Procedure has been developed
for predicting the state of the object diagnosed by such mechanism.
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Introduction

Modern information technologies for object state diagnostics make use of the specific systems of
artificial intellect — expert systems (ES). Such systems are organized so that the results of
measuring  a set of object controlled parameters X;,X,,...,X, can be used for its state diagnostics.

Operation principles and structure of the diagnostic expert system depend, to a great extent, on the
type of the inference mechanism (IM). In practice two essentially different approaches to IM
construction are used: productional and Bayesian. Productional approach, that has found wider
application, is based on the system of the so called productional rules constructed in the following
way [1]:

If X, is A, X,is A,,.., X, is A,, then with the probability p(A,, A, ..., A,)

the object is in the state H (A, A,,..., A, ).

Production systems are convenient for practical application and simple in realization. However,
they have an essential disadvantage: they are constructed so that that there exists a dependence of
the diagnostic system efficiency on the dimensionality of the controlled parameter. Diagnostic
system must be complete, i. e. for each possible variant of the controlled parameters set a
corresponding productional rule must exist. This means: if each parameter can adopt one of m

possible values, then the total number of productional rules will be N =m" and will increase with
the growth of m andn.

Bayesian inference mechanism [2] practically excludes the dimensionality problem. However,
practical capabilities of such systems are limited due to the necessity of statistical independence of
the controlled parameters. The efforts to avoid this problem were made in [3]. Here the dependent
parameters are joined in groups. Then, parameters, included in one group, are processed using
productional rules. The obtained results are already practically independent and used in Bayesian
technology. Such ES with combined IM makes it possible to solve diagnostics problems for high
dimensionality of the controlled parameters set and their possible correlation. At the same time it
has common principle disadvantage of all ES — discrete character of the controlled parameters. Both
in productional and in Bayesian systems each parameter is either a symptom with Boolean character
or manifestation, or if it is a continuous parameter, its possible values range must be divided into
subranges, i.e. discretized. This factor causes a number of problems in practical development of ES.
First, if a number of subranges is large, the choice of a rational number of subranges must result
from the non-trivial compromise between IM complexity and state evaluation accuracy. Second, the
boundaries of subranges are difficult for theoretical explanation. The very existence of boundaries
can alone lead to the unnatural situation when different diagnoses correspond to two parameter sets
that are similar as to their numerical values.

All these problems can be excluded if IM is constructionally adapted to processing of the
parameters that are discrete by their nature. Such IM can be implemented with the application of
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artificial neural networks (ANN). Let’s formulate the problem of the development of ES system
with neural network inference mechanism designed for the evaluation and prediction of the
diagnosed object state.

Problem statement

As it is known, any ANN performs mapping of the points from multidimensional observation space
X with n dimensionality onto the points of the multidimensional solution space Y that in general
case has another dimensionality H . Here, correct mapping of the points from X onto Y is provided
by a specially arranged procedure of the network training. Assume that a series of measurements of
the object controlled parameters is performed. As a result, sets X; = (Xll, X125++0s X joees X1 ),

X, :(le,xzz,...,xzj,...,XZn),..., X = (x,l,x|2,...,x|j,...,x,n),..., XL :(xLl,XLZ,...,ij,...,an) are
obtained. In the course of network training these sets are presented to Q experts that for each
X, 1=12,..,L set assign distribution of
probabilities Py = (Pigzs Pigzs---s Pighseeo Pt b 1=1.2sL, 4=12,..,Q of h=12,..,H of object
states. Elementary statistical processing of the expert evaluation results matches each measurement
set X, with the distribution of average values of state (range) probabilities I5I and a set of
probability dispersions 6',2. The obtained data are used for ANN training. After this, for each new
vector of controlled parameter measurements neural network forms corresponding vectors P(X)

ando?(X). The question about the possibility of ANN application for object state prediction
remains to be a problematic one. Let’s consider two alternative procedures of this problem solution.

Main results

A. Microapproach. As trained ANN for each observation vector of controlled parameters
determines corresponding distribution of diagnoses probabilities, the solution of the object state
prediction problem can be obtained by the observation vector prediction.

Sets X, X,,..., X, are used for the observation matrix formation:

X1 X X1in
X = X1 Xop Xon
XLl XL2 oo XLn

The columns of this matrix correspond to the readings of each controlled parameter for the time
pointst;,t,,...,t, . Let’s introduce the model of parameters evolution in time:

d .
i=0
Calculation of (Cij) parameters of the model (1) is performed by the least-squares method using
matrix
1t ..t
ol b tg
1t t

and vectors
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Now the set of vectors of regression equations parameter estimates is found by minimization of
functionals:

Ji(c) = (HC1 - X (1))T (HC1 - X (1))’
%®9=m%—xwym%_xml

3,(c) = (He, - X ™ (He, - x ™).
Optimal (in terms of least-squares method) vectors of regression coefficients are found by the
formulas:

@j:(HTH)JHTX(D,jzlﬁ,Wn. (2)

Substitution of (2) into (1) gives a set of analytical descriptions of controlled parameters in time,
which provides the possibility to calculate their values at t,, moment of the prediction:

d 3 i -
Xj(tnp) = Ebcijt'lm , )= 12,.,n.

Trained ANN will match the obtained set of parameter values
X (tnp )= (Xl (tnp )9 X5 (tnp ) I Xn (tnp ))

with the distribution of the object state probabilities at the moment of prediction.
B. Macroapproach. By means of entering observation sets X;, X,,..., X, sequentially to ANN input,

the corresponding distributions of diagnoses probabilities will be obtained:
Pu(t) = (P11s Pros Pan )

P2(t2):(p21’ P22 sz)’ (3)

PL(t.) = (PLis Poseos P )
The law of probability variations for each range, e. g. for h-range, h=1,2,...,H , is described by the
corresponding time function B, (t), that can be represented by expansion into series in terms of a

certain set of basic functions in accordance with the model:
m

where ¢,(t),@,(t),....¢,(t)is a set of basic functions.

It should be noted that standard independent evaluation of the parameters of the model (4) for each
diagnosis separately is impossible as in this case normalization condition will not be taken into
account: the sum of diagnoses probabilities at any time point must be equal to one.

In this connection let’s consider another approach.

Simple technology for the application of the set of probability distributions (3), corresponding to
the observation momentst;,t,,...,t, , for the calculation of distributions at the prediction moment
consists in the following.

We approximate each of the distributions (3) of the continuous curve (3) representing the density of
diagnosis probabilities distribution and depending on ( parameters. Now for each of the

sets (6,(t), 01 (t)seres 61(8))s (G3(t), Oyt )svrns By (1)) ey (B (1), Gy (L), Oy (t)) We build analytical

Haykosi npaui BHTY, 2009, Ne 2 3



INFORMATIONAL TECHNOLOGIES AND COMPUTER ENGINEERING

continuation and calculate the parameter set 6,(t,,),6,(typ),.... 6, (L), that defines unambiguously
the desired distribution of the diagnosis probabilities at t,, moment of prediction. Unfortunately,

this elementary procedure can turn out to be extremely labor-consuming because the character of
each distribution (3) could be so complicated that would require an unacceptably large number of
g parameters for its adequate approximation or otherwise would be inadmissibly rough.

The alternative is to use for the description of distributions (3) the laws of empirical distribution,
their principal feature being monotonous non-decreasing. For the evaluation of empiric distribution
laws the functional can be used

1 1
mw-§+§m0au (5)

where y(t) provides the empirical law g(t)adaptation to real data. In [4] it is shown that quite

acceptable (in terms of quality) approximation of real empirical distribution laws can be provided
by the description of y(t) in the form of quadratic polynomial. General prediction scheme will be

as follows. A distribution set P, (t;),P, (1,),...,P_(t.) is transformed into the empiric integral laws:

R, = (Ry1,Rizs-s1), Ry = (Ryy, Rypsnensd) s R = (R 1, Rigsennsl),
where

H
R|h - Z P|h’ I 21,2,..., L
h=1

Then each of the obtained integral laws is approximated independently using functional (5),
presented in the form of

g, (h) = % n %th(am ragh+agh?) 1=12...Lh=12,H. 6)

Approximation quality index has the form of
H
W, = 3 (R — g (M.

h=1
Minimization (7) is performed by Ileast-squares method. As a result, a number of sets
{(@g1,811,851), (802,819,899 )s.rs (8 8y, 8y, )} are obtained. These sets are used for receiving

polynomial functions a,(t),3;(t),a,(t) that provide the possibility to describe approximation (6) for
any time point.
Let’s consider this procedure in detail. For the description of functions a,(t),a,(t),a,(t) we use the
system of functions (1)), (t)),....,74 (), orthogonal on the set of equidistant points t,t,,...,t,
so, that

L, k; =k,,

L
Ellﬂkl (Mt w, () = {O, k, # k. (8)

We describe a,(t),a,(t),a,(t) in the following way:
(1) = by (D)
(0= 2 by (V) 9)
(1) = 3 by ()

Using the results of approximation (6) — (7), we introduce values sets of these functions on the set
of arguments t,t,,....,t, :
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gy ayy ay;

Ay, ap ay
A= A= s A=

8y ay ay.

Now we introduce matrix
wo(t) wit) ... wyty)
wo(ty) wi(ty) ... wy(ty)

wot) wi(t) .. wq(t)
and vectors
By =(b00 b01 bOd)a Bf =(b10 b11 bld)’ B; =(b20 b21 b2d)~

Vectors By ,B, ,B, to be found are estimated by minimization of functionals:

M, =B, —A) (B, —A) k=123

Here
A 1
B =l v v A
Tyt 1 ) . .
As due to (8), (l// V/T = E |, where | is unit matrix, then
L
E1akl wo()

L
B, =] Zawi®) | _1p3 (10)

Lo
Elam'// a()
By substitution of (10) into (9), the values of a,,,a;,8,, for any t are calculated. Now, using (6),

we calculate the empirical law of the diagnoses probability distribution for t,, moment of the

prediction.
Thus, we have solved the problem of prediction of the system state probability vector.

Conclusions

In this paper method is suggested for using ES with neural network inference mechanism for
predicting the state of the object being diagnosed. Two alternative approaches to the solution of this
problem are considered. One of them is based on the prediction of the controlled parameters
behavior. The other implements the suggested procedure of the direct prediction of failure state
probabilities distribution.
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